• Title/Summary/Keyword: Probabilistic Risk Analysis

Search Result 289, Processing Time 0.038 seconds

An integrated risk-informed safety classification for unique research reactors

  • Jacek Kalowski;Karol Kowal
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1814-1820
    • /
    • 2023
  • Safety classification of systems, structures, and components (SSC) is an essential activity for nuclear reactor design and operation. The current regulatory trend is to require risk-informed safety classification that considers first, the severity, but also the frequency of SSC failures. While safety classification for nuclear power plants is covered in many regulatory and scientific publications, research reactors received less attention. Research reactors are typically of lower power but, at the same time, are less standardized i.e., have more variability in the design, operational modes, and operating conditions. This makes them more challenging when considering safety classification. This work presents the Integrated Risk-Informed Safety Classification (IRISC) procedure which is a novel extension of the IAEA recommended process with dedicated probabilistic treatment of research reactor designs. The article provides the details of probabilistic analysis performed within safety classification process to a degree that is often missing in most literature on the topic. The article presents insight from the implementation of the procedure in the safety classification for the MARIA Research Reactor operated by the National Center for Nuclear Research in Poland.

Development of User-Friendly Modeling Software and Its Application in Processed Meat Products

  • Lee, Heeyoung;Lee, Panho;Lee, Soomin;Kim, Sejeong;Lee, Jeeyeon;Ha, Jimyeong;Choi, Yukyung;Oh, Hyemin;Yoon, Yohan
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.3
    • /
    • pp.157-161
    • /
    • 2018
  • The objective of this study was to develop software to predict the kinetic behavior and the probability of foodborne bacterial growth on processed meat products. It is designed for rapid application by non-specialists in predictive microbiology. The software, named Foodborne bacteria Animal product Modeling Equipment (FAME), was developed using Javascript and HTML. FAME consists of a kinetic model and a probabilistic model, and it can be used to predict bacterial growth pattern and probability. In addition, validation and editing of model equation are available in FAME. The data used by the software were constructed with 5,400 frankfurter samples for the kinetic model and 345,600 samples for the probabilistic model using a variety of combinations including atmospheric conditions, temperature, NaCl concentrations and $NaNO_2$ concentrations. Using FAME, users can select the concentrations of NaCl and $NaNO_2$ meat products as well as storage conditions (atmosphere and temperature). The software displays bacterial growth patterns and growth probabilities, which facilitate the determination of optimal safety conditions for meat products. FAME is useful in predicting bacterial kinetic behavior and growth probability, especially for quick application, and is designed for use by non-specialists in predictive microbiology.

Risk Analysis of Thaw Penetration Due to Global Climate Change in Cold Regions

  • Bae, Yoon-Shin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.2
    • /
    • pp.45-51
    • /
    • 2009
  • A probabilistic approach may be adopted to predict freeze and thaw depths to account for the variability of (1) material properties, and (2) contemporary and future surface energy input parameters(e.g. air temperatures, cloud cover, snow cover) predicted with global climate models. To illustrate the probabilistic approach, an example of the predicted of thaw depths in cold regions is considered. More specifically, the Stefan equation is used together with the Monte Carlo simulation technique to make a probabilistic prediction of thaw penetration. The simulation results indicate that the variability in material properties, surface energy input parameters and temperature data can lead to significant uncertainty in predicting thaw penetration.

A Case Study on Risk Analysis of Large Construction Projects (건설공사를 위한 위험분석기법 사례연구)

  • Kim Chang Hak;Park Seo Young;Kwak Joong Min;Kang In-Seok
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.1155-1162
    • /
    • 2004
  • This research proposes a new risk analysis method in order to guarantee successful performance of construction projects. The proposed risk analysis methods consists of four phases. First step, AHP model can help contractors decide whether or not they bid for a project by analysing risks involved in the project. Second step, the influence diagraming, decision tree and Monte Carlo simulation are used as tools to analyze and evaluate project risks quantitatively. Third step, Monte Carlo simulation is used to assess risk for groups of activities with probabilistic branching and calendars. Finally, Fuzzy theory suggests a risk management method for construction projects, which is using subjective knowledge of an expert and linguistic value, to analyze and quantify risk. The result of study is expected to improve the accuracy of risk analysis because three factors, such as probability, impact and exposure, for estimating membership function are introduced to quantify each risk factor. Consequently, it will help contractors identify risk elements in their projects and quantify the impact of risk on project time and cost.

  • PDF

Risk-informed approach to the safety improvement of the reactor protection system of the AGN-201K research reactor

  • Ahmed, Ibrahim;Zio, Enrico;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.52 no.4
    • /
    • pp.764-775
    • /
    • 2020
  • Periodic safety reviews (PSRs) are conducted on operating nuclear power plants (NPPs) and have been mandated also for research reactors in Korea, in response to the Fukushima accident. One safety review tool, the probabilistic safety assessment (PSA), aims to identify weaknesses in the design and operation of the research reactor, and to evaluate and compare possible safety improvements. However, the PSA for research reactors is difficult due to scarce data availability. An important element in the analysis of research reactors is the reactor protection system (RPS), with its functionality and importance. In this view, we consider that of the AGN-201K, a zero-power reactor without forced decay heat removal systems, to demonstrate a risk-informed safety improvement study. By incorporating risk- and safety-significance importance measures, and sensitivity and uncertainty analyses, the proposed method identifies critical components in the RPS reliability model, systematically proposes potential safety improvements and ranks them to assist in the decision-making process.

Analysis of the Effect of Soil Depth on Landslide Risk Assessment (산사태 조사를 통한 토층심도가 산사태 발생 위험성에 미치는 영향 분석)

  • Kim, Man-Il;Kim, Namgyun;Kwak, Jaehwan;Lee, Seung-Jae
    • The Journal of Engineering Geology
    • /
    • v.32 no.3
    • /
    • pp.327-338
    • /
    • 2022
  • This study aims to empirically and statistically predict soil depths across areas affected by landslides. Using soil depth measurements from a landslide area in Korea, two sets of soil depths are calculated using a Z-model based on terrain elevation and a probabilistic statistical model. Both sets of calculation results are applied to derive landslide risk using the saturated infiltration depth ratio of the soil layer. This facilitates analysis of the infiltration of rainfall into soil layers for a rainfall event. In comparison with the probabilistic statistical model, the Z-model yields soil depths that are closer to measured values in the study area. Landslide risk assessment in the study area based on soil depth predictions from the two models shows that the percentage of first-grade landslide risk assessed using soil depths from the probabilistic statistical model is 2.5 times that calculated using soil depths from the Z-model. This shows that soil depths directly affect landslide risk assessment; therefore, the acquisition and application of local soil depth data are crucial to landslide risk analysis.

Probabilistic Method of Risk Assessment in Voltage Sag Mitigation Studies (순간전압강하 보상을 위한 확률론적 위험도 분석 연구)

  • Han, Jong-Hoon;Jang, Gil-Soo;Park, Chang-Hyun
    • Journal of IKEEE
    • /
    • v.14 no.3
    • /
    • pp.236-243
    • /
    • 2010
  • Power quality mitigation devices play an important role in lots of industrial segments. Although there were many devices available in the market, the selection of an appropriate device specially for voltage sags and interruptions mitigation has been a challenge in the utility and customer for several years. It usually depends on technical and economic characteristics of the device. Nevertheless, most mitigation method is selected by rule of thumb or empirical method. In this paper, the life cycle cost analysis for the probabilistic risk assesment of voltage sag mitigation method is performed using either the deterministic or probabilistic approach. The difference between a deterministic and a probabilistic cost analysis approach is illustrated with five different case studies. This paper not only provides a comparison of life cycle costing of various devices but it also indirectly shows the possible savings due to the mitigation of voltage sags in the form of a project balance chart.

Development of Disaster Risk Analysis System for Environment Friendly Road (친환경 도로노선의 재해위험도 평가시스템 개발)

  • Song, Min-Tae;Kang, Ho-Geun;Kim, Heung-Rae;Lee, Tae-Ock;Lee, Han-Joo
    • International Journal of Highway Engineering
    • /
    • v.14 no.5
    • /
    • pp.123-132
    • /
    • 2012
  • PURPOSES: This study is to investigate the consideration which relates with a disaster from route alignment process and proposed the method it will be able to evaluate a disaster danger fixed quantity. METHODS: Use the landslide disaster probabilistic map of GIS based and in about landslide occurrence of the route alignment at the time of neighboring area after evaluating a risk fixed quantity, it compared LCC expense in about each alternative route. It developed the system it will be able to analyze a LCC and a disaster risk in about the alternative route. In order to verify a risk analytical algorithm and the system which are developed it selected national road 59 lines on the demonstrative route and it analyzed a disaster risk. RESULTS: Demonstrative route not only the disaster risk to be it will be able to compare a disaster risk fixed quantity like the economical efficiency degree in compliance with LCC expense productions it compared and there being the designer will be able to decide the alternative route, it confirmed. CONCLUSIONS: Roads can be designed by considering occurs repeatedly landslides and debris flow caused by disasters in advance and expect to be able to effect that can reduce the overall cost to recover losses caused by the disaster, and temporally loss is expected.

A case study for determination of seismic risk priorities in Van (Eastern Turkey)

  • Buyuksarac, Aydin;Isik, Ercan;Harirchian, Ehsan
    • Earthquakes and Structures
    • /
    • v.20 no.4
    • /
    • pp.445-455
    • /
    • 2021
  • Lake Van Basin, located in Eastern Turkey, is worth examining in terms of seismicity due to large-scale losses of property and life during the historical and instrumental period. The most important and largest province in this basin is Van. Recent indicators of the high seismicity risk in the province are damage occurring after devastating earthquakes in 2011 (Mw=7.2 and Mw=5.6) and lastly in 2020 Khoy (Mw=5.9). The seismic hazard analysis for Van and its districts in Eastern Turkey was performed in probabilistic manner. Analyses were made for thirteen different districts in Van. In this study, information is given about the tectonic setting and seismicity of Van. The probabilistic seismic hazard curves were obtained for a probability of exceedance of 2%, 10% and 50% in 50-year periods. The PGA values in the Van province vary from 0.24 g - 0.43 g for earthquakes with repetition period of 475 years. Risk priorities were determined for all districts. The highest risk was calculated for Çaldıran and the lowest risk was found for Gürpınar. Risk priorities for buildings in all districts were also determined via rapid seismic assessment for reinforced-concrete and masonry buildings in this study.

Direct fault-tree modeling of human failure event dependency in probabilistic safety assessment

  • Ji Suk Kim;Sang Hoon Han;Man Cheol Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.119-130
    • /
    • 2023
  • Among the various elements of probabilistic safety assessment (PSA), human failure events (HFEs) and their dependencies are major contributors to the quantification of risk of a nuclear power plant. Currently, the dependency among HFEs is reflected using a post-processing method in PSA, wherein several drawbacks, such as limited propagation of minimal cutsets through the fault tree and improper truncation of minimal cutsets exist. In this paper, we propose a method to model the HFE dependency directly in a fault tree using the if-then-else logic. The proposed method proved to be equivalent to the conventional post-processing method while addressing the drawbacks of the latter. We also developed a software tool to facilitate the implementation of the proposed method considering the need for modeling the dependency between multiple HFEs. We applied the proposed method to a specific case to demonstrate the drawbacks of the conventional post-processing method and the advantages of the proposed method. When applied appropriately under specific conditions, the direct fault-tree modeling of HFE dependency enhances the accuracy of the risk quantification and facilitates the analysis of minimal cutsets.