• Title/Summary/Keyword: Probabilistic Theory

Search Result 213, Processing Time 0.024 seconds

Causal reasoning studies with a focus on the Power Probabilistic Contrast Theory (힘 확률 대비 이론에 기반을 둔 인과 추론 연구)

  • Park, Jooyong
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.4
    • /
    • pp.541-572
    • /
    • 2016
  • Causal reasoning is actively studied not only by psychologists but, in recent years, also by cognitive scientists taking the Bayesian approach. This paper seeks to provide an overview of the recent trends in causal reasoning research with a focus on the power probabilistic contrast theory of causality, a major psychological theory on causal inference. The power probabilistic contrast theory (PPCT) assumes that a cause is a power that initiates or inhibits the result. This power is purported be understood through statistical correlation under certain conditions. The paper examines the supporting empirical evidence in the development of PPCT. Also, introduced are the theoretical dispute between the PPCT and the model based on Bayesian approach, and the current developments and implications of research on causal invariance hypothesis, which states that cause operates identically regardless of the context. Recent studies have produced experimental results that cannot be readily explained by existing empirical approach. Therefore, these results call for serious examination of the power theory of causality by researchers in neighboring fields such as philosophy, statistics, and artificial intelligence.

A Probabilistic Model for the Prediction of Burr Formation in Face Milling

  • Suneung Ahn
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.23 no.60
    • /
    • pp.23-36
    • /
    • 2000
  • A probabilistic model of burr formation in face milling of gray cast iron is proposed. During a face milling operation, an irregular pattern of the edge profile consisting of burrs and edge breakouts is observed at the end of cut. Based on the metal cutting theory, we derive a probabilistic model. The operational bayesian modeling approach is adopted to include the relevant theory in the model.

  • PDF

Paul Erdos and Probabilistic Methods (폴 에르디쉬와 확률론적 방법론)

  • Koh, Young-Mee;Ree, Sang-Wook
    • Journal for History of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.101-112
    • /
    • 2005
  • In this article, we introduce a generous but eccentric genius in mathematics, Paul Erdos. He invented probabilistic methods, pioneered in their applications to discrete mathematics, and estabilshed new theories, which are regarded as the greatest among his contributions to mathematical world. Here we introduce the probabilistic methods and random graph theory developed by Erdos and look at his life in glance with great respect for him.

  • PDF

The Problem of Disjunctive Causal Factors: In Defense of the Theory of Probabilistic Causation

  • Kim, Joon-Sung
    • Korean Journal of Logic
    • /
    • v.5 no.2
    • /
    • pp.115-131
    • /
    • 2002
  • The problem of disjunctive causal factors is generalized as follows. Suppose that there are no factors of the kind considered so far that need to be held fixed in background contexts. Nevertheless, it is still possible that within the background contexts, each disjunct of a disjunctive causal factor X v W confers a different probability on an effect factor in Question. So a problem arises of how we identify a single causally significant probability of the effect factor in the presence of the disjunctive causal factor, assuming that each disjunct of the disjunctive causal factor confers a different probability on the effect factor. In this paper, I first introduce an experiment in which disjunctive causal factors seem to pose a problem for the theory of probabilistic causation. Second, I show how Eells' solution to the problem of disjunctive causal factors meets the problem that arises in the experiment. Third, I examine Hitchcock's arguments against Eells' solution, arguing that Hitchcock misconstrues Eells' solution, and disregards the feature of the theory of probabilistic causation such that a factor is a causal factor for another factor relative to a population P of a population type Q.

  • PDF

Analysis of Network Chain using Dynamic Convolution Model (동적 확률 재규격화를 이용한 네트워크 연쇄 관계 해석)

  • Lee, Hyungjin;Kim, Taegon;Lee, JeongJae;Suh, Kyo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.56 no.1
    • /
    • pp.11-20
    • /
    • 2014
  • Many classification studies for the community of densely-connected nodes are limited to the comprehensive analysis for detecting the communities in probabilistic networks with nodes and edge of the probabilistic distribution because of the difficulties of the probabilistic operation. This study aims to use convolution method for operating nodes and edge of probabilistic distribution. For the probabilistic hierarchy network with nodes and edges of the probabilistic distribution, the model of this study detects the communities of nodes to make the new probabilistic distribution with two distribution. The results of our model was verified through comparing with Monte-carlo Simulation and other community-detecting methods.

Fuzziness in Radiation Protection and Nuclear Safety (Human Factors and Reliability)

  • Nishiwaki, Yasushi
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1047-1050
    • /
    • 1993
  • In radiation protection and nuclear safety, there are many uncertainties or fuzziness due to subjective human judgement. It is desirable to have a theory by which both non-probabilistic uncertainties, or fuzziness, of human factors and the probabilistic properties of machines can be treated consistently. Fuzzy set theory seems to be an effective tool for analyzing the risk and safety of complex man-machine systems such as nuclear power plants.

  • PDF

A new adaptive mesh refinement strategy based on a probabilistic error estimation

  • Ziaei, H.;Moslemi, H.
    • Structural Engineering and Mechanics
    • /
    • v.74 no.4
    • /
    • pp.547-557
    • /
    • 2020
  • In this paper, an automatic adaptive mesh refinement procedure is presented for two-dimensional problems on the basis of a new probabilistic error estimator. First-order perturbation theory is employed to determine the lower and upper bounds of the structural displacements and stresses considering uncertainties in geometric sizes, material properties and loading conditions. A new probabilistic error estimator is proposed to reduce the mesh dependency of the responses dispersion. The suggested error estimator neglects the refinement at the critical points with stress concentration. Therefore, the proposed strategy is combined with the classic adaptive mesh refinement to achieve an optimal mesh refined properly in regions with either high gradients or high dispersion of the responses. Several numerical examples are illustrated to demonstrate the efficiency, accuracy and robustness of the proposed computational algorithm and the results are compared with the classic adaptive mesh refinement strategy described in the literature.

Probabilistic Seismic Hazard Analysis of Caisson-Type Breakwaters (케이슨 방파제의 확률론적 지진재해도 평가)

  • KIM SANG-HOON;KIM DOO-KIE
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.1 s.62
    • /
    • pp.26-32
    • /
    • 2005
  • Recent earthquakes, measuring over a magnitude of 5.0, on the eastern coast of Korea, have aroused interest in earthquake analyses and the seismic design of caisson-type breakwaters. Most earthquake analysis methods, such as equivalent static analysis, response spectrum analysis, nonlinear analysis, and capacity analysis, are deterministic and have been used for seismic design and performance evaluation of coastal structures. However, deterministic methods are difficult for reflecting on one of the most important characteristics of earthquakes, i.e. the uncertainty of earthquakes. This paper presents results of probabilistic seismic hazard assessment(PSHA) of an actual caisson-type breakwater, considering uncertainties of earthquake occurrences and soil properties. First, the seismic vulnerability of a structure and the seismic hazard of the site are evaluated, using earthquake sets and a seismic hazard map; then, the seismic risk of the structure is assessed.

COMMON FIXED POINT RESULTS FOR NON-COMPATIBLE R-WEAKLY COMMUTING MAPPINGS IN PROBABILISTIC SEMIMETRIC SPACES USING CONTROL FUNCTIONS

  • Das, Krishnapada
    • Korean Journal of Mathematics
    • /
    • v.27 no.3
    • /
    • pp.629-643
    • /
    • 2019
  • In common fixed point problems in metric spaces several versions of weak commutativity have been considered. Mappings which are not compatible have also been discussed in common fixed point problems. Here we consider common fixed point problems of non-compatible and R-weakly commuting mappings in probabilistic semimetric spaces with the help of a control function. This work is in line with research in probabilistic fixed point theory using control functions. Further we support our results by examples.

TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

  • Lo, Chung-Kung;Pedroni, N.;Zio, E.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.11-26
    • /
    • 2014
  • The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest.