• Title/Summary/Keyword: Probe Microphone

Search Result 10, Processing Time 0.035 seconds

ITE Hearing Aid Specification Testing Devise Development using Probe Microphones (프로브 마이크로폰을 사용한 귓속형 보청기 성능 검사장치 개발)

  • 장순석;권유정
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.1044-1047
    • /
    • 2003
  • An acoustic testing device composed of 2 probe microphones was developed for the electro-acoustic specification testing of the ITE (In-The-Ear) hearing aid (HA). The amplitude ratio and the phase difference between the incident pressure onto the HA microphone and the outward pressure of the HA receiver were measured by the present acoustic system. The microphones were particularly used because of small acoustic cavities where input and output pressures were present. The acoustic wall composed of clay completely blocks the propagation of the sound pressure between the small acoustic cavities. The system has an advantage of structural flexibility for the acoustic testing of different sizes and shapes of ITE-type HAs.

  • PDF

A Study on the Sensitivity Compensation of Three-dimensional Acoustic Intensity Probe in the Higher Frequency Range (3차원 음향 인텐시티 프로브의 고주파 영역 감도 보상 연구)

  • Kim, Suk-Jae;Hideo, Suzuki;Kim, Chun-Duck
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.5
    • /
    • pp.40-50
    • /
    • 1994
  • In this paper, the sensitivity compensation method for three-dimensional acoustic intensity probe in the higher frequency range has been studied. The measurement error in the higher frequency range is generated from the phase mismatch between microphone's signals of the probe. If the wavelength of sound signal measured is less than those of the distance between microphones of the probe, that is, the higher frequency of the sound signal, the bigger measurement error is generated. In this study, we proposed the compensation methods for one-dimensional acoustic intensity probe with two-microphones, and the efficiency of those methods were investigated by numerical calculation of computer. It was most effective method to compensate the phase mismatch between microphone for the acoustic intensity probe was investigated for the sound estimated. and the efficiency of this method in a three-dimensional probe was investigated for the sound wave travelling in the arbitrary direction by numerical calculation of computer. In this result, the efficiency was proved that, for the measurement error of 1dB or less with the three-dimensional probe of 60mm space, the frequency should be less than 1.2kHz without the error compensation method, but the frequency increased up to 2.8kHz with the error compensation method.

  • PDF

A Study on Silencer Performance Assessment under Onboard Condition (선내 탑재된 소음기 성능평가 방법에 관한 연구)

  • Lee, Do-Kyung;Jin, Bong-Man;Lee, Cheul-Won;Kim, Nho-Sung;Choi, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.731-736
    • /
    • 2004
  • The exhaust noise of auxiliary engine in ships is directly transmitted to bridge wing with only distance attenuation. It is not easy to find out practical treatment to be applied between exhaust pipe and bridge wing to reduce the transmission of the exhaust noise. In general, therefore, a silencer is fitted to reduce the exhaust noise and correspondingly noise of bridge wing. The silencer should be properly designed under the consideration of the frequency component of the exhaust noise and the required performance such as noise reduction or insertion loss. In general, the gas inside the exhaust pipe flows with high temperature and speed and thus onboard test condition is more adverse than the standard atmospheric condition. In this study, the test method to evaluate silencer performance using a probe microphone is introduced.

  • PDF

Implementation a Physical Ear Model for Determinating Location of the Microphone of Fully Implantable Middle Ear Hearing Device (완전 이식형 인공중이용 마이크로폰의 위치 결정을 위한 물리적 귀 모델의 구현)

  • Kim, D.W.;Seong, K.W.;Lim, H.K.;Kim, M.W.;Jung, E.S.;Lee, J.W.;Lee, M.W.;Lee, J.H.;Kim, M.N.;Cho, J.H.
    • Journal of rehabilitation welfare engineering & assistive technology
    • /
    • v.2 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Generally, implantable microphone has been implanted in the temporal bone for implantable middle ear hearing devices (IMEHDs). In this case, the microphone's membrane can be damaged and can be generated biological noise. In order to overcome the these problems, the location of implanted microphone should be changed. As an alternative, the microphone can be implanted in the external auditory canal. However, the sound emission can be produced because of vibration transducer toward reverse direction from the tympanic membrane to the external auditory canal. In this paper, an amount of the emitted sound is measured using a probe microphone as the changing the position of microphone in the external auditory canal of a physical ear model, which is similar to acoustical and vibratory properties of the human ear. Through the measured value, the location of the microphone was assumed in the external auditory canal. According to the analysis, the microphone input sound can be decreased when microphone position become more distance from the tympanic membrane in the auditory canal. However, the external auditory canal is not appropriated to implantable microphone position, because sound emission is not completely eliminated.

  • PDF

A Study on Silencer Performance Assessment under Onboard Condition (선내 탑재된 소음기 성능평가 방법에 관한 연구)

  • Lee, Do-Kyung;Jin, Bong-Man;Lee, Cheul-Won;Kim, Nho-Sung;Choi, Su-Hyun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.2 s.95
    • /
    • pp.176-183
    • /
    • 2005
  • The exhaust noise of auxiliary engine in ships is directly transmitted to bridge wing with only distance attenuation. It is not easy to find out practical treatment to be applied between exhaust pipe and bridge wing to reduce the transmission of the exhaust noise. In general, therefore, a silencer is fitted to reduce the exhaust noise and correspondingly noise of bridge wing. The silencer should be properly designed under the consideration of the frequency component of the exhaust noise and the required performance such as noise reduction or insertion loss. In general, the gas inside the exhaust pipe flows with high temperature and speed and thus onboard test condition is more adverse than the standard atmospheric condition. In this study, the test method to evaluate silencer performance using a probe microphone is introduced.

The comparison of the voice between the free field and the external auditory canal (음장과 외이도 내부에서의 음성 비교)

  • Heo, Seung-Deok;Kim, Lee-Suk;Ko, Do-Heung;Lee, Jung-Hak
    • Speech Sciences
    • /
    • v.7 no.4
    • /
    • pp.83-90
    • /
    • 2000
  • The purpose of this study was to examine some acoustic characteristics in the ear canal. It was assumed that a sound outside the external auditory canal could be different from the sound inside the external auditory canal. The acoustic signals were captured by a probe microphone placed at a distance within 1 cm from the tympanic membrane, and a reference microphone was placed over the upper pinna. Three vowels /a/, /i/, /u/ were recorded from a normal adult male speaker. The parameters such as the formant frequency ($Fl\simF5$) and the peak intensity were measured using a speech analyser, PCquirer. It was found that the entering part of the external auditory canal functions as a narrowing point as to the speech that passes through the free field. Results show that acoustic characteristics were changed for speech discrimination rather than speech perception.

  • PDF

Development of a Practical Two-Microphone Impedance Tube Method for Sound Transmission Loss Measurement of Sound Isolation Materials

  • Ro, Sing-Nam;Hwang, Yoon;Lee, Dong-Hoon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.105-113
    • /
    • 2003
  • This study developed a practical two-microphone impedance tube method to measure the sound transmission loss of sound isolation materials without the use of an expensive reverberation room or an acoustic intensity probe. In order to evaluate the validation and applicability of the two-microphone impedance tube method, sound transmission losses for several sound isolation materials with different surface density and bending stiffness were measured, and the measured values were compared with the results from the reverberation room method and the theory. From the experimental results, it was found that the accuracy of sound transmission loss obtained by the impedance tube method depends upon the diameter size of the impedance tube (i.e., tested sample size). For sound isolation materials having relatively large bending stiffness such as acryl, wood, and aluminum plates, it was found that the impedance tube method proposed by this study was not valid to measure the sound transmission loss. On the other hand, for sound isolation materials having relatively small bending stiffness such as rubber, polyvinyl, and asphalt sheets, the comparisons of transmission loss between the results from the impedance tube method and the theory showed a good agreement within the range of the frequencies satisfying the normal incidence mass law. Therefore, the two-microphone impedance tube method proposed by this study can be an effective measurement method to evaluate the sound transmission loss for soft sound isolation sheets having relatively small bending stiffness.

Characteristics of Sound Response in Ear Canal of Human and Reproduction of Acoustical Space (인간 이도의 소리응답특성과 음향공간의 재현)

  • Ahn, Tae-Soo;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.9
    • /
    • pp.842-849
    • /
    • 2011
  • The human ear canal amplifies the sound pressure level at specific frequency bands. The characteristics of the ear canal are very similar to those of curved cylindrical tube. In this study, the characteristics of sound transfer in human ear canal were measured and the acoustical space of ear canal was reproduced from the canal cavity geometry. For the measurement of sound transfer function in ear canal, a probe microphone and a reference microphone were used. The sound transfer functions were measured for 5 human subjects. To reproduce the acoustical space of the ear canal, two kinds of ear simulator were designed. The first one is a straight cylindrical tube type and the other is a real-shape ear of which geometry was taken from a micro-CT scanning of a human ear. The characteristics of the reproduced apparatus were compared with those of the human and a commercial ear simulator, RA0045 of G.R.A.S. Inc. The comparison results show that the developed apparatus well represent the ear canal characteristics in the low frequency, but have limited coincidence in level over high frequency range.

Comparison of the sound source localization methods appropriate for a compact microphone array (소형 마이크로폰 배열에 적용 가능한 음원 위치 추정법 비교)

  • Jung, In-Jee;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.1
    • /
    • pp.47-56
    • /
    • 2020
  • The sound source localization technique has various application fields in the era of internet-of-things, for which the probe size becomes critical. The localization methods using the acoustic intensity vector has an advantage of downsizing the layout of the array owing to a small finite-difference error for the short distance between adjacent microphones. In this paper, the acoustic intensity vector and the Time Difference of Arrival (TDoA) method are compared in the viewpoint of the localization error in the far-field. The comparison is made according to the change of spacing between adjacent microphones of the three-dimensional microphone array arranged in a tetrahedral shape. An additional test is conducted in the reverberant field by varying the reverberation time to verify the effectiveness of the methods applied to the actual environments. For estimating the TDoA, the Generalized Cross Correlation-Phase transform (GCC-PHAT) algorithm is adopted in the computation. It is found that the mean localization error of the acoustic intensimetry is 2.9° and that of the GCC-PHAT is 7.3° for T60 = 0.4 s, while the error increases as 9.9°, 13.0° for T60 = 1.0 s, respectively. The data supports that a compact array employing the acoustic intensimetry can localize of the sound source in the actual environment with the moderate reflection conditions.

Low-Frequency Electromagnetic Leakage Signal Analysis According to Fundamental Operations of Smartphones (스마트폰 기본 동작 모드에 따른 저주파 대역 누설 전자파 신호 특성 분석)

  • Lee, Young-Jun;Park, Heesun;Kwon, YoungHyoun;Lee, Jaeki;Choi, Ji-Eun;Cho, Sangwoo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.9
    • /
    • pp.1108-1119
    • /
    • 2016
  • This paper presents the spectral analysis and radiation pattern of low-frequency electromagnetic(EM) leakage signals according to the fundamental operations of smartphones. The EM leakage signals generated by the activation of four I/O sensor modules such as a touch-screen, a camera, a microphone and a speaker are captured by the commercial near-field magnetic probe with 1cm spatial resolution. The analysis results show that the leakage of the EM wave occurs strongly around the activated I/O sensor modules, AP(Application Processor) and memory modules. Also, the distinguishable frequency characteristic is shown in each spectrum of EM leakage signals.