• Title/Summary/Keyword: Process Heat Exchanger

Search Result 281, Processing Time 0.033 seconds

A Numerical Process for the Underhood Thermal Management with the Microscopic and Semi-microscopic Heat Transfer Method (미시적/준미시적 방법을 이용한 자동차용 열교환기 해석기법)

  • Lee, Sang-Hyuk;Kim, Joo-Han;Lee, Na-Ri;Hur, Nahm-Keon
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.75-79
    • /
    • 2008
  • In this study, the numerical process for analyzing the automotive louver fin heat exchanger was developed with a 3D microscopic and semi-microscopic analysis. In the microscopic analysis, the simulation with the detailed meshes was performed for obtaining the characteristics of the heat exchanger. From this simulation, the numerical correlations of the heat transfer and flow friction were obtained. In the semi-microscopic analysis, the Semi-microscopic Heat Exchanger (SHE) method, which is characterized by a conjugate heat transfer and porous media analysis was used with the numerical correlation from the microscopic analysis. This analysis predicted the flow and heat transfer characteristics of the louver fin heat exchanger in the wind tunnel and vehicle. In the design of the louver fin heat exchanger, this numerical process can predict the performance and characteristic of the louver fin heat exchanger.

  • PDF

A Numerical Analysis Study on Plate Heat Exchanger Heat Transfer Characteristic by Corrugation Angle and Pitch (주름 각도와 피치에 따른 판형 열교환기 전열특성에 관한 수치해석 연구)

  • Kang, Dae-Ki;Kim, Si-Pom;Hwang, Il-Ju;Lee, Jae-Hoon;Do, Tae-Wan;Yeo, Woon-Yeop
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.154-159
    • /
    • 2012
  • For numerical analysis of the plate heat exchanger, a lot of time are required in modeling work and calculation. Whereas, this paper was purposed to identify characteristic of the plate heat exchanger through simplification of modeling by interpreting the numerical analysis proximity with the actual model. This study was also examined temperature difference between inlet side and outlet side, inner pressure drop, heat transfer area of plate and change of heat transfer coefficient on the plate depending on the inner corrugation angle and corrugation pitch of a herring bon pattern of the plate heat exchanger among chevron types of the plate exchanger.

A Numerical Analysis for the Performance Improvement of a Channel Heat Exchanger (채널형 열교환기의 성능향상에 관한 수치해석)

  • Jang, Byung-Hyun;Kim, Si-Peom;Lee, Kwon-Hee
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.159-164
    • /
    • 2012
  • The shell & tube heat exchanger is used throughout various industries because of its inexpensive cost and handiness when it comes to maintenance. However, it has many design elements such as the location and the shape of inlet and outlet, the numbers of tubes and baffles, etc. Also, the flow within the shell and the heat transfer are complex. This paper is performed numerical analysis to evaluate capabilities of difference in temperature and pressure drop, which are the performance of channel heat exchanger, one of different types of shell & tube exchanger. Also, factors that affect the performance of channel heat exchanger were selected through design of experiment along with key factors.

A Study on the Condensation Heat Transfer Characteristics of a Loop Heat Pipe Heat Exchanger for High Speed Rotary Shaft Cooling (고속 회전축 냉각용 루우프 히트파이프 열교환기의 응축열전달 특성에 관한 연구)

  • Cho, Dong-Hyun;Lee, Jong-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.147-152
    • /
    • 2017
  • In the present study, we used a loop thermosyphon heat exchanger consisting of condensers with internal fins and external plate fins which are 480 mm wide, 68 mm long, and 1,000 mm high. The heat transfer pipes in the heat exchanger were 15 mm in diameter and 1,000 mm in length, and 98 heat transfer pipes were installed in the heat exchanger. According to the experimental results, as the spaces between the internal discontinuous pins decreased, the frequency of pressure drops increased and changes in temperature at the outlet of the condenser were shown to be a little smaller. Therefore, we can see that as the spaces between internal discontinuous pins decreased, the heat transfer performance increased. For the loop heat pipe heat exchanger consisting of a condenser with internal and plate fins, as the temperature of the air flowing into the condenser increased, the condensation heat transfer rate also increased, and as the condenser refrigerant inflow temperature increased, the condensation heat transfer rate increased as well.

Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment (원자력 극한환경용 세라믹 열교환기 소재로서 반응소결 SiC 세라믹스 제작성)

  • Jung, Choong-Hwan;Park, Ji-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.48 no.1
    • /
    • pp.52-56
    • /
    • 2011
  • Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.

Applicability of Plate Heat Exchanger to Plant Cooling Water Systems in Pressure Water Reactor (원자력발전소 기기냉각수계통의 판형열교환기 적용성)

  • Lim, Hyuk-Soon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.505-510
    • /
    • 2001
  • Advanced Pressurized Reactor 1400(APR1400), which is a standard evolutionary advanced light water reactor(ALWR), has been developed from 1992 as one of long-term Government Project(G-7). The APR-1400 is designed to operate at the rated output of 4000MWt to produce an electric power output of around 1450MWe. Due to the increased electric power, In Nuclear Power plant huge quantities of heat are generated in the thermo-dynamic process used for producing electrical energy. So, There is considerationly additional cooling, Heat transfer area and increased cooling water of Heat Exchanger which take care of the different smaller cooling duties within the nuclear power plant. We review applying to PRE instead of Shell-and-Tube Heat exchanger. In this paper, we describe the major design features of PRE, Comparison between a PHE and a Shell-and-Tube Heat Exchanger, and then Applicability of Plate Heat Exchanger in Nuclear Power Plant Component Cooling water systems.

  • PDF

Consideration for Heat Exchanger Performance Evaluation with reduced spend fuel pool heat due to the long-term over-haul maintenance (장기 예방정비로 인한 사용후연료저장조 열원 감소가 열교환기 성능평가에 미치는 영향 고찰)

  • Park, Chan;Lee, Sung Ho
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.16 no.1
    • /
    • pp.56-64
    • /
    • 2020
  • The safety related heat exchangers have been evaluated for their performance during the operation of the nuclear power plant. The evaluation program for the safety related heat exchanger was developed in 2010 and used by KHNP based on EPRI TR-10739 algorithms. The spend fuel pool heat exchanger is one of the safety related heat exchanger in the nuclear power plant and also evaluated for their performance. Recently the performance evaluation for the spend fuel pool heat exchanger was not available because of the decreased heat in the spend fuel pool due to the long term overhaul. This paper analyzes the main cause of evaluation failure in the evaluation process and suggests the criteria for the heat exchanger performance evaluation during the long term overhaul.

Numerical Study of Heat Transfer Characteristics and Thermal Stress for Enamel coating Heat Exchanger in High Temperature Firing Process (법랑코팅 열교환기에서 고온 소성공정에 따른 열전달 및 열응력에 관한 연구)

  • Choi, Hoon-Ki;Lim, Yun-Seung;Lee, Jong-Wook
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.2
    • /
    • pp.82-88
    • /
    • 2020
  • The purpose of this study is to obtain basic data on the optimization of firing process conditions for enamel coating in chemical heat exchanger. The method of increasing the firing temperature in order to apply enamel coating to shell & tube type heat exchanger was examined. The temperature distribution of the heat exchanger in the firing kiln was numerically calculated using a commercial CFD program. The structural safety of the heat exchanger was confirmed by thermal stress analysis using the FSI method. Numerical analysis and experimental results show that there is a problem of safety due to temperature difference when the heat exchanger at room temperature is directly put into a firing kiln at 860℃. Therefore, a preheating process is need to reduce the temperature difference. As in Case2 with fewer firing steps, the first stage preheating temperature of 445℃and the second stage firing temperature of 860 ℃are considered to be most suitable.

Design of a Micro-Channel Heat Exchanger for Heat Pump Using Approximate Optimization Method (근사최적화 기법을 이용한 히트펌프용 마이크로 채널 응축기 설계)

  • Seo, Seok-Won;Ye, Huee-Youl;Lee, Kwan-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.3
    • /
    • pp.256-264
    • /
    • 2012
  • A general procedure for the optimal design of a micro-channel heat exchanger for heat pump systems is presented. For this design, a performance analysis program that can reflect the various geometric variables of the micro-channel heat exchanger was developed. The deviation between simulated and experiment results of previous research was within 4% for the heat transfer rate. To prove the feasibility of the optimal design process, the performance of the reference heat exchanger was compared to that of the optimized heat exchanger. The $JF_{air}$ and PECv of the optimized heat exchanger were enhanced by 14% and 26%, respectively.

Design of Heat Exchanger for Section 3 of SI Hydrogen Production Process (SI 수소생산 공정 Section 3 열교환기 설계)

  • Kim, Ki-Sub;Park, Byung Heung
    • Journal of Institute of Convergence Technology
    • /
    • v.7 no.1
    • /
    • pp.19-22
    • /
    • 2017
  • SI process is one of the most advanced thermochemical water splitting cycles enabling mass production of hydrogen without emitting carbon dioxide when coupled to nuclear heat energy. The highest temperature (close to $1000^{\circ}C$) required in SI process is well matched with the outlet temperature of a coolant circulating a high-temperature gas-cooled reactor at around $950^{\circ}C$. In Section 3, some heat exchangers are included to recover heats from process flows at high temperature. In this work, we designed a heat exchanger based on the $1Nm^3/hr$ $H_2$ production capacity using commercial tools for chemical process design.