• Title/Summary/Keyword: Process time

Search Result 25,176, Processing Time 0.05 seconds

Throughput Analysis for Dual Blade Robot Cluster Tool (듀얼블레이드 로봇 클러스터툴의 생산성 분석)

  • Ryu, Sun-Joong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.12
    • /
    • pp.1240-1245
    • /
    • 2009
  • The throughput characteristics of the cluster tool with dual blade robot are analyzed. Using equipment's cycle time chart of the equipment, simple analytic form of the throughput is derived. Then, several important throughput characteristics are analyzed by the throughput formula. First, utilization of the process chamber and the robot are maximized by assigning the equipment to the process whose processing time is near the critical process time. Second, rule for selecting optimal number of process chambers is suggested. It is desirable to select a single process chamber plus a single robot structure for relatively short time process and multi process chambers plus a single robot, namely cluster tool for relatively long time process. Third, throughput variation between equipments due to the wafer transfer time variation is analyzed, especially for the process whose processing time is less than critical process time. And the throughput and the wafer transfer time of the equipments in our fabrication line are measured and compared to the analysis.

THE SOJOURN TIME AND RELATED CHARACTERISTICS OF THE AGE-DEPENDENT BRANCHING PROCESS

  • Kumar, B.-Krishba;Vijayakumar, A.
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.157-172
    • /
    • 2004
  • An age-dependent branching process where disasters occur as a renewal process leading to annihilation or survival of all the cells, is considered. For such a process, the total mean sojourn time of all the cells in the system is analysed using the regeneration point technique. The mean number of cells which die in time t and its asymptotic behaviour are discussed. When the disasters arrival as a Poisson process and the lifetime of the cells follows exponential distribution, elegant inter- relationships are found among the means of (i) the total number of cells which die in time t (ii) the total sojourn time of all cells in the system upto time t and (iii) the number of living cells at time t. Some of the existing results are deduced as special cases for related processes.

BAYESIAN APPROACH TO MEAN TIME BETWEEN FAILURE USING THE MODULATED POWER LAW PROCESS

  • Na, Myung-Hwa;Kim, Moon-Ju;Ma, Lin
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.10 no.2
    • /
    • pp.41-47
    • /
    • 2006
  • The Renewal process and the Non-homogeneous Poisson process (NHPP) process are probably the most popular models for describing the failure pattern of repairable systems. But both these models are based on too restrictive assumptions on the effect of the repair action. For these reasons, several authors have recently proposed point process models which incorporate both renewal type behavior and time trend. One of these models is the Modulated Power Law Process (MPLP). The Modulated Power Law Process is a suitable model for describing the failure pattern of repairable systems when both renewal-type behavior and time trend are present. In this paper we propose Bayes estimation of the next failure time after the system has experienced some failures, that is, Mean Time Between Failure for the MPLP model. Numerical examples illustrate the estimation procedure.

  • PDF

An Efficient Analysis Model for Process Quality Information in Manufacturing Process of Automobile Safety Belt Parts (자동차 안전벨트 부품 제조공정에서의 효율적 공정품질정보 분석 모형)

  • Kong, Myung Dal
    • Journal of the Korean Institute of Plant Engineering
    • /
    • v.23 no.4
    • /
    • pp.29-38
    • /
    • 2018
  • Through process quality information, the time required for process quality analysis has been drastically shortened, the process defect rate has been reduced, and the manufacturing lead time has been shortened and the on-time delivery rate has been improved. Therefore, The purpose of this study is to develop a quality information analysis system model that effectively shortens the time required for process quality analysis in automobile safety belt parts manufacturing process. As a result of experiments on communication operation between manufacturing execution system (MES) quality server, injection machine control computer, injection machine programmable logic controller (PLC) and terminal, in analyzing quality information, the conventional handwriting input method took an average of 20 minutes, but the new multi-network method took about 2 minutes on average. In addition, the process defect rate was reduced by 13% and the manufacturing lead time was shortened from 28 hours to 20 hours. The delivery compliance rate improved from 96 to 99%.

Uniform Ergodicity and Exponential α-Mixing for Continuous Time Stochastic Volatility Model

  • Lee, O.
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.2
    • /
    • pp.229-236
    • /
    • 2011
  • A continuous time stochastic volatility model for financial assets suggested by Barndorff-Nielsen and Shephard (2001) is considered, where the volatility process is modelled as an Ornstein-Uhlenbeck type process driven by a general L$\'{e}$vy process and the price process is then obtained by using an independent Brownian motion as the driving noise. The uniform ergodicity of the volatility process and exponential ${\alpha}$-mixing properties of the log price processes of given continuous time stochastic volatility models are obtained.

면삭밀링의 합리적인 표준시간 계산방법에 관한 연구

  • 박규생;김준안;김선태;김병현;정성련
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.250-255
    • /
    • 1992
  • This paper discusses how to develop a standard time for face cutting. The discussion focusses especially on the useful experert and law data for automated generate standard time purposes. Make standard time is a means to realize the process planning. Also process planning is a process which expresses design. In past times, a process planning was done using only experience of expert. But nowadays many people try to make automated process planning. This paper discusses standard time of the face cutting, but except making process sequence. In order to make standard time, some rules have to be generated and some industrial data found out. So we can calulate standard time in die. This is to easer and to correct calulate standard time. Using some rules that are application oriented to every parts of die.

Stamping Tool Wearing Analysis by Time-Frequency Analysis (시간-주파수 분석에 의한 금형 마모 분석)

  • Lee, Chang-Hee;Han, Ho-Young;Seo, Geun-Seok;Kim, Yong-Yun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.3
    • /
    • pp.407-413
    • /
    • 2010
  • This paper reports on the research which analyzes acoustic signals acquired in progressive compressing, hole blanking, and burr compacting process. An acoustic sensor was set on the bed of hydraulic press. Acoustic signal is generated from progressive stamping process. First the signal acquired from the unit process; compressing, blanking or compacting, is studied by Fourier Transform and Short Time Fourier Transform. The blanking process emitted ultrasonic signal with more than 20kHz, but the compressing and compacting processes emitted acoustic signals with lower than 10kHz. The combined signals periodically acquired right after the tool grinding were then analyzed. 70-80kHz signals appeared in time-frequency domain, but not in the frequency domain, the magnitude of which was related to the tool wear. Short Time Fourier Transform made up for the Fourier Transform in analyzing the emitted signal for stamping process in the ultrasonic domain.

A continuous time asymmetric power GARCH process driven by a L$\'{e}$vy process

  • Lee, Oe-Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.21 no.6
    • /
    • pp.1311-1317
    • /
    • 2010
  • A continuous time asymmetric power GARCH(1,1) model is suggested, based on a single background driving L$\'{e}$vy process. The stochastic differential equation for the given process is derived and the strict stationarity and kth order moment conditions are examined.

THE CHANGE OF FILM CHARACTERISTICS ACCORDING TO THE PROCESS OF USING TIME OF PROCESSING SOLUTION (현상액의 사용 시일 경과에 따른 필름 특성의 변화)

  • Chung Moon Sung;Chung Hyun Dae
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.22 no.1
    • /
    • pp.128-136
    • /
    • 1992
  • This study was undertakened to investigate the change of image characteristics on dental films according to the process of using time of processing solution in automatic processor. Base + fog density, film density and subject contrast were measured with the digital densitometer, the pH of developing and fixing solution were measured with Digital pH / ION Meter. The following results were obtained: 1. Base + fog density was increased with the process of using time of the processing solution and was over the maximum permissible base + fog density 0.25 from the 3rd day. 2. Film density was increased with the process of using time of the processing solution. 3. Subject contrast was decreased with the process of using time of the processing solution. 4. The pH of the developing solution was decreased with the process of using time, the pH of the fixing solution was increased.

  • PDF

Rescheduling algorithms considering unit failure on the batch process management (회분공정의 장치 고장을 고려한 동적생산계획 기법)

  • Ko, Dae-Ho;Moon, Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1028-1031
    • /
    • 1996
  • Dynamic scheduling is very important in constructing CIM and improving productivity of chemical processing systems. Computation at the scheduling level requires mostly a long time to generate an optimal schedule, so it is difficult to immediately respond to actual process events in real-time. To solve these problems, we developed dynamic scheduling algorithms such as DSMM(Dynamic Shift Modification Method), PUOM(Parallel Unit Operation Method) and UVVM(Unit Validity Verification Method). Their main functions are to minimize the effects of unexpected disturbances such as process time variations and unit failure, to predict a makespan of the updated dynamic schedule and to modify schedule desirably in real-time responding to process time variations. As a result, the algorithms generate a new pertinent schedule in real-time which is close to the original schedule but provides an efficient way of responding to the variation of process environment. Examples in a shampoo production batch process illustrate the efficiency of the algorithms.

  • PDF