• Title/Summary/Keyword: Profilometry

Search Result 81, Processing Time 0.038 seconds

A Study on 3-Dimensional Profilometry of Steam Generator Tube Using a New Eddy Current Probe

  • Kim, Young-Kyu;Song, Myung-Ho;Choi, Myung-Sik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.225-235
    • /
    • 2010
  • There are many types of the geometric transitions such as dent, bulge, protrusion, expansion, etc, on the inner and outer surfaces of heat exchanger tubes, steam generator tubes, and condenser tubes of nuclear power plants. Such geometric transition causes a local residual stress in heat exchanger tubes and acts as a structural factor accelerating the evolution of defects, in particular stress corrosion cracks. In the conventional eddy current test methods, the bobbin coil profilometry can provide 2-dimensional geometric information on the variation of the average inner diameter along the tube length, but the 3-dimensional distribution and the quantitative size of a local geometric transition existing in the tube cannot be measured. In this paper, a new eddy current probe, developed for the 3-dimensional profile measurement, is introduced and its superior performance is compared with that from the conventional bobbin coil profilometry for the various types of geometric transition. Also, the accuracy of the probe for the quantitative profile measurement is verified by comparing the results with that from the laser profilometry. It is expected that the new eddy current probe and techniques can be effectively used for an optimization of the tube expansion process, and the management of tubes with geometric transitions in service.

A 3D measurement system based on a double frequency method using Fourier transform profilometry (FTP를 이용한 이중 파장법에 의한 3차원 형상 측정)

  • Koo, Ja-myoung;Cho, Tai-hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.6
    • /
    • pp.1485-1492
    • /
    • 2015
  • This paper proposes a double frequency method using FTP(Fourier Transform Profilometry) in fringe projection techniques for 3D measurement systems. In fringe projection techniques, fringe pattern images are projected and captured, and then object is measured by analysing phase. PMP(Phase Measuring Profilometry) for analysing phase provides high-resolution and is robust to object's reflection and background intensities. However, the measurement range is narrow due to 2π ambiguity. In order to overcome this problem, a double frequency method is often used. This method can widen the range of measurement while maintaining the high-resolution, but the measurement time is taken about twice due to grab 2 times number of images. The proposed double frequency method using FTP requires an additional image for resolving 2π ambiguity. The proposed method effectively reduces the measurement time while maintaining the same accuracy.

A Study on the Phase Measuring Profilometry with Parallel-optical-axes (평행 광축에서의 위상측정 형상측정법에 관한 연구)

  • 정경민;박윤창;박경근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.210-217
    • /
    • 2000
  • Noncontact measuring methodology of 3-dimensional profile using CCD camera are very attractive because of it's high measuring speed and it's high sensitivity. Especially when projecting a grid pattern over the object, the captured image have 3 dimensional information of the object. Projection moire extract 3-D information with another grid pattern in front of CCD camera. However phase measuring profilometry(PMP) obtain similar results without additional grid pattern. In this paper, the projection moire are compared with the PMP mathematically, and it is shown that PMP can generate moire image with simple mathematical computations. Experimental works are also carried out showing the same results. It is shown that using a single gird pattern, moire image can be obtained directly without any mathematical operation when some conditions are satisfied.

  • PDF

A study on the nonlinear error correction of the phase measuring profilometry (PMP 형상 측정법에서 비선형 오차보정에 관한 연구)

  • 황용선;강영준;박낙규;백성훈
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.513-516
    • /
    • 2003
  • Phase Measuring Profilometry(PMP) has been developed as one of three dimensional 3-D shape measuring methods. The 3-D profile of an object was calculated from the phase data obtained by the sinusoidal patterns projected on the object. However, in some cases the approximation includes considerable errors. In this paper, the effect on the errors caused by the optical geometry and the calibration procedure in PMP technique are discussed. The errors which occured in the process of calculating the 3-D profile from the phase distribution are investigated theoritically and experimentally.

  • PDF

3-D Profilometry by Phase Shifting Profilometry (위상이동법을 이용한 3차원 형상측정법의 연구)

  • 오동석;남기봉
    • Korean Journal of Optics and Photonics
    • /
    • v.5 no.2
    • /
    • pp.191-197
    • /
    • 1994
  • We investigated the properties of various methods of 3 dimensional profilometry to choose the phase shifting technique for the reconstruction of the shape of a given specimen. The pattern was generated by a Twyman-Green interferometer and a PZT was used to shift the fringes on the target surface. The shape was calculated with Hariharan algorithm within the uncertainty of a scaling factor. The optical noise inherent in the laser source was observed to influence the final outcome to a great extent and the need for an exact calibration was noted. noted.

  • PDF

Phase Error Reduction for Multi-frequency Fringe Projection Profilometry Using Adaptive Compensation

  • Cho, Choon Sik;Han, Junghee
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.332-339
    • /
    • 2018
  • A new multi-frequency fringe projection method is proposed to reduce the nonlinear phase error in 3-D shape measurements using an adaptive compensation method. The phase error of the traditional fringe projection technique originates from various sources such as lens distortion, the nonlinear imaging system and a nonsinusoidal fringe pattern that can be very difficult to model. Inherent possibility of phase error appearing hinders one from accurate 3-D reconstruction. In this work, an adaptive compensation algorithm is introduced to reduce adaptively the phase error resulting from the fringe projection profilometry. Three different frequencies are used for generating the gratings of projector and conveyed to the four-step phase-shifting procedure to measure the objects of very discontinuous surfaces. The 3-D shape results show that this proposed technique succeeds in reconstructing the 3-D shape of any type of objects.

3-D Measurement of LED Packages Using Phase Measurement Profilometry (위상측정법을 이용한 LED Package의 3차원 형상 측정)

  • Koo, Ja-Myoung;Cho, Tai-Hoon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.17-22
    • /
    • 2011
  • LEDs(Light Emitting Diodes) are becoming widely used and increasingly in demand. Quality inspection of the LEDs has become more important. Two-dimensional inspection systems are limited in inspection capability, so threedimensional(3-D) inspection systems are needed. In this paper, a cost-effective and simple 3-D measurement system of LED packages using phase measuring profilometry(PMP) is proposed. The proposed system uses a pico projector to project sinusoidal fringe patterns and to shift phases instead of piezocrystal. It was evaluated using extremely accurate gauge blocks, yielding excellent repeatability of about 12 um(3-sigma). 3-D measurements of various LED packages were performed to demonstrate the applicability and efficiency of the proposed system.

A 3D Measurement System for the Leads of Semiconductor Chips Using Phase Measuring Profilometry (Phase Measuring Profilometry를 이용한 반도체 칩의 Lead 높이 측정 방법)

  • Kim, Young-Doo;Cho, Tai-Hoon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.223-226
    • /
    • 2011
  • 반도체 공정에서 부품의 결함을 찾는 것은 완제품의 품질 개선을 위해 중요하다. 현재까지 많은 비전 알고리즘들이 부품의 결함을 찾기 위해 적용되고 있다. 그러나 이런 알고리즘 대부분은 2D 방식의 검사 방식에 머물고 있다. 그러나 이런 2D방식의 검사 방법은 반도체 칩의 Lead나 Pad 그리고 Solder Joint와 같이 3D 정보에 의해 불량 유무를 판결해야 하는 곳에 적용하기 어렵다. 이에 본 논문에서는 PMP(Phase Measuring Profilometry)방법에 의해 반도체 칩의 Lead부분을 검사하기 위한 시스템 구성과 방법을 제안한다.

A New Profilometry System for Precision Measurement of 3D Shape Using the Directional Magnification Control of a Laser Light Stripe (선모양을 한 레이저빔의 방향성 배율 확대를 이용한 정밀 형상측정 시스템)

  • Park, Seung-Kyu;Baik, Sung-Hoon;KIM, Cheol-Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.5
    • /
    • pp.60-65
    • /
    • 1997
  • This paper proposes a profilometry system for precise surface contouring of 3D objects using a direc- tionally magnified image of a laser light stripe. The resolution of this system can be improved several times comparad with that of conventional systems without loss of spatial resolution and depth of measurement. A pair of cylindrical lens(a convex lens and a concave lens) are used for a directionally magnified image of a laser light stripe maintaining the same focal plane. Also, image processing procedures for image reconstruc- tions are described.

  • PDF

Error compensation in the optical 3D phase measuring profilometry (광위상 3차원 형상 측정법에서의 오차보정)

  • 황용선;강영준;백성훈;박승규;임창환
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.154-155
    • /
    • 2003
  • PMP(Phase Measuring Profilometry)측정법은 투영계와 기록계의 기하학적 구성과 광학계의 정렬적인 문제에 의해서 기본적으로 오차를 가지고 측정된다. 일반적으로 PMP 형상 측정에서 측정면과 광학계의 높이가 피 측정면에 비해서 상당히 큰 경우, CCD 카메라에서 높이 방향으로 측정영역이 작아지게됨으로써 측정위상이 기준면에서의 위치와 높이 방향에 따라서 다르게 나타나고 프로젝터가 측정면에 투영되는 간섭무의의 피치가 다르게 적용된다. (중략)

  • PDF