• Title/Summary/Keyword: Profit based unit commitment and deregulation

Search Result 3, Processing Time 0.018 seconds

Improved Pre-prepared Power Demand Table and Muller's Method to Solve the Profit Based Unit Commitment Problem

  • Chandram, K.;Subrahmanyam, N.;Sydulu, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.159-167
    • /
    • 2009
  • This paper presents the Improved Pre-prepared Power Demand (IPPD) table and Muller's method as a means of solving the Profit Based Unit Commitment (PBUC) problem. In a deregulated environment, generation companies (GENCOs) schedule their generators to maximize profits rather than to satisfy power demand. The PBUC problem is solved by the proposed approach in two stages. Initially, information concerning committed units is obtained by the IPPD table and then the subprob-lem of Economic Dispatch (ED) is solved using Muller's method. The proposed approach has been tested on a power system with 3 and 10 generating units. Simulation results of the proposed approach have been compared with existing methods and also with traditional unit commitment. It is observed from the simulation results that the proposed algorithm provides maximum profit with less computational time compared to existing methods.

Hybrid Artificial Immune System Approach for Profit Based Unit Commitment Problem

  • Lakshmi, K.;Vasantharathna, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.959-968
    • /
    • 2013
  • This paper presents a new approach with artificial immune system algorithm to solve the profit based unit commitment problem. The objective of this work is to find the optimal generation scheduling and to maximize the profit of generation companies (Gencos) when subjected to various constraints such as power balance, spinning reserve, minimum up/down time and ramp rate limits. The proposed hybrid method is developed through adaptive search which is inspired from artificial immune system and genetic algorithm to carry out profit maximization of generation companies. The effectiveness of the proposed approach has been tested for different Gencos consists of 3, 10 and 36 generating units and the results are compared with the existing methods.

An Explicit Column Generation Algorithm for the Profit Based Unit Commitment Problem in Electric Power Industry (전력산업에서의 Profit-Based Unit Commitment Problem 최적화를 위한 명시적 열생성 알고리즘)

  • Lee, Kyung-Sik;Song, Sang-Hwa
    • IE interfaces
    • /
    • v.20 no.2
    • /
    • pp.186-194
    • /
    • 2007
  • Recent deregulation of Korean electricity industry has made each power generation company pay more attention to maximizing its own profit instead of minimizing the overall system operation cost while guaranteeing system security. Electricity power generation problem is typically defined as the problem of determining both the on and off status and the power generation level of each generator under the given fuel constraints, which has been known as Profit-Based Unit Commitment (PBUC) problem. To solve the PBUC problem, the previous research mostly focused on devising Lagrangian Relaxation (LR) based heuristic algorithms due to the complexity of the problem and the nonlinearity of constraints and objectives. However, these heuristic approaches have been reported as less practical in real world applications since the computational run time is usually quite high and it may take a while to implement the devised heuristic algorithms as software applications. Especially when considering long-term planning problem which spans at least one year, the complexity becomes higher. Therefore, this paper proposes an explicit column generation algorithm using power generation patterns and the proposed algorithm is successfully applied to a Korean power generation company. The proposed scheme has a robust structure so that it is expected to extend general PBUC problems.