• Title/Summary/Keyword: Progressive Failure

Search Result 411, Processing Time 0.028 seconds

Responses of Ultrasonic Backscattered Energy and AE Charateristics on the Progressive Damage of Crossply Composite Laminates (초음파와 음향 방출법을 이용한 복합재료 직교적층판의 점진적 손상과정에 관한 연구)

  • Jeon, Heung-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.5 s.176
    • /
    • pp.1084-1092
    • /
    • 2000
  • Responses of ultrasonic back scattered energy and AE (Acoustic Emission) characteristics related to the progressive damage of $[0/90-{2}]_s$ and $[0/90-{4}]_s$ crossply laminates were studied. It was found that the ultrasonic backscattered energy was sensitive to the matrix cracking but not sensitive to other failure mechanisms. However, AE was proved to be sensitive to matrix cracking as well as other failure mechanisms.AE signals were analyzed by investigating the amplitude and number of counts per event for corresponding applied strain. Loading and unloading tests were conducted separately. AE results showed Kaiser effect in the crossply composite laminates and ultrasonic results supported the AE results.

Effect of Earthquake characteristics on seismic progressive collapse potential in steel moment resisting frame

  • Tavakoli, Hamid R.;Hasani, Amir H.
    • Earthquakes and Structures
    • /
    • v.12 no.5
    • /
    • pp.529-541
    • /
    • 2017
  • According to the definition, progressive collapse could occur due to the initial partial failure of the structural members which by spreading to the adjacent members, could result in partial or overall collapse of the structure. Up to now, most researchers have investigated the progressive collapse due to explosion, fire or impact loads. But new research has shown that the seismic load could also be a factor for initiation of the progressive collapse. In this research, the progressive collapse capacity for the 5 and 15-story steel special moment resisting frames using push-down nonlinear static analysis, and nonlinear dynamic analysis under the gravity loads specified in the GSA Guidelines, were studied. After identifying the critical members, in order to investigate the seismic progressive collapse, the 5-story steel special moment resisting frame was analyzed by the nonlinear time history analysis under the effect of earthquakes with different characteristics. In order to account for the initial damage, one of the critical columns was weakened at the initiation of the earthquake or its Peak Ground Acceleration (PGA). The results of progressive collapse analyses showed that the potential of progressive collapse is considerably dependent upon location of the removed column and the number of stories, also the results of seismic progressive collapse showed that the dynamic response of column removal under the seismic load is completely dependent on earthquake characteristics like Arias intensity, PGA and earthquake frequency contents.

A Numerical Study on the Progressive Brittle Failure of Rock Mass Due to Overstress (과지압으로 인한 암반의 점진적 취성파괴 과정의 수치해석적 연구)

  • Choi Young-Tae;Lee Dae-Hyuck;Lee Hee-Suk;Kim Jin-A;Lee Du-Hwa;You Kwang-Ho;Park Yeon-Jun
    • Tunnel and Underground Space
    • /
    • v.16 no.3 s.62
    • /
    • pp.259-276
    • /
    • 2006
  • In rock mass subject to high in-situ stresses, the failure process of rock is dominated by the stress-induced fractures growing parallel to the excavation boundary. When the ratio of in situ stresses compared to rock strength is greater than a certain value, progressive brittle failure which is characterized by popping and spatting of rock debris occurs due to stress concentration. Traditional constitutive model like Mohr-Coulomb usually assume that the normal stress dependent frictional strength component and the cohesion strength component are constant, therefore modelling progressive brittle failure will be very difficult. In this study, a series of numerical analyses were conducted for surrounding rock mass near crude oil storage cavern using CW-FS model which was known to be efficient for modelling brittle failure and the results were compared with those of linear Mohr-Coulomb model. Further analyses were performed by varying plastic shear strain limits on cohesion and internal friction angle to find the proper values which yield the matching result with the observed failure in the oil storage caverns. The obtained results showed that CW-FS model could be a proper method to characterize essential behavior of progressive brittle failure in competent rock mass.

On Estimating Burr Type XII Parameter Based on General Type II Progressive Censoring

  • Kim Chan-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.13 no.1
    • /
    • pp.89-99
    • /
    • 2006
  • This article deals with the problem of estimating parameters of Burr Type XII distribution, on the basis of a general progressive Type II censored sample using Bayesian viewpoints. The maximum likelihood estimator does not admit closed form but explicit sharp lower and upper bounds are provided. Assuming squared error loss and linex loss functions, Bayes estimators of the parameter k, the reliability function, and the failure rate function are obtained in closed form. Finally, a simulation study is also included.

Bayesian Prediction of Exponentiated Weibull Distribution based on Progressive Type II Censoring

  • Jung, Jinhyouk;Chung, Younshik
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.427-438
    • /
    • 2013
  • Based on progressive Type II censored sampling which is an important method to obtain failure data in a lifetime study, we suggest a very general form of Bayesian prediction bounds from two parameters exponentiated Weibull distribution using the proper general prior density. For this, Markov chain Monte Carlo approach is considered and we also provide a simulation study.

Cause of Rall Road Slope Failure and Determination of Soil Strength for Remedy (철도사면파괴 원인 및 대책공법 적용을 위한 강도정수 결정)

  • Lee, Seung-Hyun;Kim, Byoung-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.3 s.14
    • /
    • pp.25-31
    • /
    • 2004
  • Rail road slope can be fatted because of existence of unexpected soft subsoil. Purpose of this study is verifying the cause of rail road slope failure and determination of soil strength for remedy. Drilling some boreholes, cone penetration test and field vane test were executed in order to find out the cause of slope failure. In addition, laboratory test was conducted in order to determine soil strength of soft soil sampled as undisturbed state. As a result of both the in-situ and the laboratory tests, the cause of slope failure is thought to be propagation of failure zone by progressive rupture of overconsolidated clay Soft soil strength was determined through back analysis of the failed slope.

Dynamic analysis method for the progressive collapse of long-span spatial grid structures

  • Tian, Li-min;Wei, Jian-peng;Hao, Ji-ping;Wang, Xian-tie
    • Steel and Composite Structures
    • /
    • v.23 no.4
    • /
    • pp.435-444
    • /
    • 2017
  • In the past, the progressive collapse resulting from local failures during accidents has caused many tragedies and loss of life. Although long-span spatial grid structures are characterised by a high degree of static indeterminacy, the sudden failure of key members may lead to a catastrophic progressive collapse. For this reason, it is especially necessary to research the progressive collapse resistance capacity of long-span spatial grid structures. This paper presents an evaluation method of important members and a novel dynamic analysis method for simulating the progressive collapse of long-span spatial grid structures. Engineering cases were analysed to validate these proposed method. These proposed methods were eventually implemented in the progressive collapse analysis of the main stadium for the Universiade Sports Center. The roof of the structure was concluded to have good resistance against progressive collapse. The novel methods provide results close to practice and are especially suitable for the progressive collapse analysis of long-span spatial grid structures.

A Case of the patient who was admitted to hospital the 8th day of Paraquat Poisoning (파라콰트 중독 8일 후 내원한 환자 1례)

  • Heo Geum-Jeong;Kim Dong-Jo;Park Byung-Wook;Koo Chang-Mo;Nam Chang-Gyu
    • The Journal of Internal Korean Medicine
    • /
    • v.24 no.4_2
    • /
    • pp.1087-1092
    • /
    • 2003
  • Paraquat is a non-selective contact herbicide. When it is consumed, it may cause fatal disorders such as acute renal failure, hepatic dysfunction, and progressive respiratory failure. In spite of many efforts to cure patients poisoned with paraquat, the mortality rate still remain high. In this case, after using Gamdutanghaphwangryunhaedoktang-gamibang and Cheongsangboha-tang we got positive result in hepato-renal function, but progressive respiratory failure was unstoppable.

  • PDF

Shearing characteristics of slip zone soils and strain localization analysis of a landslide

  • Liu, Dong;Chen, Xiaoping
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.33-52
    • /
    • 2015
  • Based on the Mohr-Coulomb failure criterion, a gradient-dependent plastic model that considers the strain-softening behavior is presented in this study. Both triaxial shear tests on conventional specimen and precut-specimen, which were obtained from an ancient landslide, are performed to plot the post-peak stress-strain entire-process curves. According to the test results of the soil strength, which reduces from peak to residual strength, the Mohr-Coulomb criterion that considers strain-softening under gradient plastic theory is deduced, where strength reduction depends on the hardening parameter and the Laplacian thereof. The validity of the model is evaluated by the simulation of the results of triaxial shear test, and the computed and measured curves are consistent and independent of the adopted mesh. Finally, a progressive failure of the ancient landslide, which was triggered by slide of the toe, is simulated using this model, and the effects of the strain-softening process on the landslide stability are discussed.

Progressive Failure Analysis of Adhesive Joints of Filament-Wound Composite Pressure Vessel (필라멘트 와인딩 복합재 압력용기의 접착 체결부에 대한 점진적 파손 해석)

  • Kim, Junhwan;Shin, Kwangbok;Hwang, Taekyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.11
    • /
    • pp.1265-1272
    • /
    • 2014
  • This study performed the progressive failure analysis of adhesive joints of a composite pressure vessel with a separated dome by using a cohesive zone model. In order to determine the input parameters of a cohesive element for numerical analysis, the interlaminar fracture toughness values in modes I and II and in the mixed mode for the adhesive joints of the composite pressure vessel were obtained by a material test. All specimens were manufactured by the filament winding method. A mechanical test was performed on adhesively bonded double-lap joints to determine the shear strength of the adhesive joints and verify the reliability of the cohesive zone model for progressive failure analysis. The test results showed that the shear strength of the adhesive joints was 32MPa; the experiment and analysis results had an error of about 4.4%, indicating their relatively good agreement. The progressive failure analysis of a composite pressure vessel with an adhesively bonded dome performed using the cohesive zone model showed that only 5.8% of the total adhesive length was debonded and this debonded length did not affect the structural integrity of the vessel.