• Title/Summary/Keyword: Propagation loss

Search Result 604, Processing Time 0.024 seconds

Bottom Loss Variation of Low-Frequency Sound Wave in the Yellow Sea (황해에서 저주파 음파의 해저손실 변동)

  • Kim, Bong-Chae
    • Ocean and Polar Research
    • /
    • v.29 no.2
    • /
    • pp.113-121
    • /
    • 2007
  • The sound wave in the sea propagates under the effect of water depth, sound speed structure, sea surface roughness, bottom roughness, and acoustic properties of bottom sediment. In shallow water, the bottom sediments are distributed very variously with place and the sound speed structure varying with time and space. In order to investigate the seasonal propagation characteristics of low-frequency sound wave in the Yellow Sea, propagation experiments were conducted along a track in the middle part of the Yellow Sea in spring, summer, and autumn. In this paper we consider seasonal variations of the sound speed profile and propagation loss based on the measurement results. Also we quantitatively investigate variation of bottom loss by dividing the propagation loss into three components: spreading loss, absorption loss, and bottom loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn, and the propagation losses measured in autumn were smaller than the losses in spring. The spreading loss and the absorption loss did not show seasonal variations, but the bottom loss showed seasonal variations. So it was thought that the seasonal variation of the propagation loss was due to the seasonal change of the bottom loss and the seasonal variation of the bottom loss was due to the change of the sound speed profile by season.

Prediction Model of Propagation Path Loss of the Free Space in the Sea (해수면 자유공간의 전파경로손실 예측 모델)

  • 류광진;박창균
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.7
    • /
    • pp.579-584
    • /
    • 2003
  • All of propagation path loss prediction models, which have been presented up to date, are oかy for ground living space. In reality, sea surface free space is different from ground living space in physical hierarchical structure. If the propagation path prediction model for ground living space is applied to the sea surface free space, propagation path loss will be smaller than actual value, while the maximum service straight line will become shorter. Thus this paper proposed and simulated the propagation path loss prediction model for predicting propagation path loss more accurately in sea surface free space, with its focus on CDMA mobile communication frequency band. Then the simulation results were compared to actual survey to verify its practicality.

A Study on LEE Model Application for Propagation Loss Estimation of UHF band in Mountain Area (산악지형에서의 UHF대역 전파손실예측을 위한 LEE모델 적용방안 연구)

  • Lee, Changwon;Jeon, Yongchan;Shin, Imseob;Kim, Jin-Goog
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.167-172
    • /
    • 2015
  • In this paper, we have compared some radio propagation models in order to verify the performance of W.C.Y LEE propagation model in mountain area. The four propagation models, which are Okumura-Hata, ITU-R P.525, Egli and W.C.Y. LEE, are analyzed by comparing the differences between measured values and propagation loss estimation values. And a correction method for W.C.Y LEE model is suggested to improve the performance of W.C.Y. LEE model with measured data in mountain area. Simulation results show that the estimation error using W.C.Y LEE model is the lowest among four propagation models. Also, the results show that the corrected W.C.Y LEE model with suggested method improves the performance of propagation loss estimation.

A Study on Propagation Path Characteristics of GPS Potential Jamming Signal Based on Spherical Ground Diffraction Loss

  • Ko, Kwang-Soob
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.3
    • /
    • pp.264-269
    • /
    • 2013
  • This paper is to investigate propagation path characteristics of GPS potential jamming signal. To do this, the spherical ground diffraction model is applied to the potential jamming scenario referred to the GPS jamming events occurred in recent years. The fundamental theory on the propagation path loss is discussed and a specific model is applied to several vehicles types which have own heights of antennas in order to compare their propagation path loss values at same 2-D location. The transmitting powers are appropriately given as the ordinary GPS jamming events. And then the received powers in dBW are obtained with given transmitting powers and the estimated total loss. The result of received jamming power at various locations due to the given scenario was distinct. For example, propagation loss values were estimated as -147 ~ -142dBW and -167 ~ -162dBW in $10^6W$ and $10^4W$, respectively. This computation result of the loss can be seriously considered with the tolerable jammer power against L1- C/A GPS receiver under any real jamming situations.

Temporal and Spatial Variability of Sound Propagation Characteristics in the Northern East China Sea (동중국해 북부해역에서 음파전달 특성의 시공간적 변동성)

  • Park, Kyeongju;Chu, Peter Cheng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.201-211
    • /
    • 2015
  • Acoustic propagation in shallow water with changing environments is a major concern of navy. Temporal and spatial variability of acoustic propagation in the northern East China Sea (ECS) is studied, using the 11 years hydrographic data and the Bellhop acoustic model. Acoustic propagation in the northern ECS is highly variable due to extensive interaction of various ocean currents and boundaries. Seasonal variations of transmission loss (TL) with various source depths are highly affected by sharp gradient of sound speed and bottoms interaction. Especially, various bottom sediment types lead to severely degrading a waterborne propagation with bottom loss. In particular, the highly increased TL near the ocean front depends on the source position, and the direction of sound propagation.

A Study on Seasonal Variation of Propagation Loss in the Yellow Sea Using Broadband Source of Low Frequency (황해에서 저주파 광대역 음원을 이용한 전달손실의 계절변동 연구)

  • 김봉채;최복경
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • The sound wave in the sea propagates under the effect of water depth, sound velocity structure, sea surface and bottom roughness, and bottom sediment distribution. In particular the sound velocity structure in shallow water varies with time and space, an? the sediment distributes very variedly with place. In order to investigate the seasonal variation of low-frequency sound propagation in the Yellow Sea, the propagation experiments were conducted along the same track in the middle part of the Yellow Sea at various seasons of spring. summer, and autumn. In this paper we consider the measurement results on the propagation loss with the sound velocity structure, and investigate the seasonal variation of the propagation loss. As a result, the propagation losses measured in summer were larger than the losses in spring and autumn. And the propagation losses measured in autumn were smaller than the losses in spring. The seasonal change of the propagation loss increased with the rise of sound frequency and the propagation range.

Propagation Loss Measurement of Underwater Sound Wave using Narrow Band Acoustic Signal (협대역 음향신호를 이용한 수중음파의 전파손실 측정)

  • Na, Young-Nam;Shim, Tae-Bo;Choi, Jin-Hyeok;Chang, Duck-Hong;Kim, Seong-Il;Han, Jeong-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.5-15
    • /
    • 1994
  • In order to examine the propagation loss associated with water depth and bottom sediment type, an acoustic experiment was conducted in the Southeast Sea of Korea. A sound source was towed along the pre-defined tracks in about 5kts and the signal was simultaneously received at three bottom-moored hydrophones. The propagation loss of sound wave traveling along the isodepth was compared with that crossing the isodepth. The former case shows, in general, less loss than the latter. This trend is stronger as the distance between a source and a receiver increases. When sound wave propagates across the isodepth, we also find that the propagation loss is influenced by the upsloping and downslopoing conditions of wave propagtion. In general, the propagation loss under downsloping condition is smaller than that of upsloping condition, and the differences are as large as 10dB in some cases. However, little difference are found in the propagation loss depending on the bottom types : gravelly sand and sand-silt-clay. Meanwhile, the optimum propagation frequencies are found within range of 130-255Hz.

  • PDF

A Study on the Predictive Model of Propagation Path Loss in Millimeter-Wave Band (밀리미터파 대역에서 전파경로손실 예측 모델)

  • Kim, Song-Min
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.42 no.2
    • /
    • pp.23-28
    • /
    • 2005
  • This study was to suggest the propagation path loss and predictive model of propagation path analysis in order to apply the frequency in the millimeter-wave band to the real time inter-vehicle communication system. This study was to suppose the case of inter-vehicle communication on the one-way two-lanes road in the big cites with a lot of traffic jams in order to analyze the effect by the reflected wave of multipath. As a simulation of suggested model, it found out that the propagation path by the reflected wave was about 0.1[m]$\sim$5.1[m] longer than the one by the direct wave during the transmission of 100[m] wave direct path. Also, as a result of comparing the propagation path loss, the loss would be about -0.8[dB]$\sim$-4.2[dB] larger in case of wall reflection and -0.8[dB]$\sim$-1[dB] vehicle reflection. From the result above, this researcher found out that the path loss of reflected wave produced by the walls was about -3.2[dB] larger than the path loss produced by the adjacent vehicles.

Heat Loss to Combustion Chamber Wall During Laminar Flame Propagation (층류화염전파중의 연소실 벽면으로의 열손실)

  • 이상준;한동호;김문헌;이종태;이성열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1398-1407
    • /
    • 1992
  • The prediction of heat loss during laminar flame propagation was carried out by measurement of gas pressure and visualization of flame propagation in the constant volume combustion chamber. And to validate the prediction, the instantaneous temperature at wall of combustion chamber was also measured. Consequently, it was found that heat loss was increased according to increasing of maximum flame travel distance, but rate of heat loss for heat release during laminar flame propagation was nearly constant. And heat loss depends on heat transfer area which was contacted the wall by burned gas regardless to spark plug location.

Numerical Simulation of Flame Propagation in a Micro Combustor (초소형 연소기내 화염전파의 수치모사)

  • Choi, Kwon-Hyoung;Lee, Dae-Hoon;Kwon, Se-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.6
    • /
    • pp.685-692
    • /
    • 2003
  • A numerical simulation of flame propagation in a micro combustor was carried out. Combustor has a sub -millimeter depth cylindrical internal volume and axisymmetric one-dimensional was used to simplify the geometry. Semi-empirical heat transfer model was used to account for the heat loss to the walls during the flame propagation. A detailed chemical kinetics model of $H_2/Air$ with 10 species and 16 reaction steps was used to calculate the combustion. An operator-splitting PISO scheme that is non-iterative, time-dependent, and implicit was used to solve the system of transport equations. The computation was validated for adiabatic flame propagation and showed good agreement with existing results of adiabatic flame propagation. A full simulation including the heat loss model was carried out and results were compared with measurements made at corresponding test conditions. The heat loss that adds its significance at smaller value of combust or height obviously affected the flame propagation speed as final temperature of the burnt gas inside the combustor. Also, the distribution of gas properties such as temperature and species concentration showed wide variation inside the combustor, which affected the evaluation of total work available of the gases.