• Title/Summary/Keyword: Propellant

Search Result 1,205, Processing Time 0.024 seconds

Experimental Study on Cryogenic Propellant Circulation using Gas-lift (Gas-lift를 이용한 극저온 추진제의 재순환 성능에 대한 실험)

  • Kwon, Oh-Sung;Lee, Joong-Youp;Chung, Yong-Gahp
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.551-554
    • /
    • 2006
  • Inhibition of propellant temperature rising in liquid propulsion rocket using cryogenic fluid as a propellant is very important. Especially propellant temperature rising during stand-by after filling and pre-pressurization can bring into cavitation in turbo-pump. One of the method preventing propellant temperature rising in cryogenic feeding system is recirculating propellant through the loop composed of propellant tank, feed pipe, and recirculation pipe. The circulation of propellant is promoted through gas-lift effect by gas injection to lower position of recirculation pipe. In this experiment liquid oxygen and gas helium is used as propellant and injection gas. Under atmospheric and pressurized tank ullage condition, helium injection flow-rate is varied to observe the variation of recirculating flow-rate and propellant temperature in the feed pipe. There is appropriate helium injection flow-rate for gas-lift recirculation system.

  • PDF

Research on the Storage Life of Single Base Propellant by Adding Inorganic Stabilizer $CaCO_3$ (무기 안정제 $CaCO_3$ 첨가에 따른 단기 추진제의 저장 수명에 관한 연구)

  • Chang, Il-Ho;Cho, Ki-Hong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.200-207
    • /
    • 2007
  • Single base propellant using a nitrate ester compound NC decomposes naturally during storage time. Therefore, the research for storage life extension is necessary to single base propellant. In this research, $CaCO_3$ inorganic stabilizer had been added into single base propellants up to 0.3%, and the accelerated aging test of the propellant was started. And then, with applying the Arrhenius equation, the storage life of the test of the propellant was contrasted with that of reference propellant. As a result, the storage life of the propellant containing $CaCO_3$ inorganic stabilizer was about twice longer than the reference propellant.

Estimation of Heat Transfer Coefficient at the Upper Layer of Cryogenic Propellant (극저온 추진제 상층부에서의 열전달계수 예측)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Kil, Gyoung-Sub;Ko, Young-Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.82-89
    • /
    • 2012
  • The temperature of cryogenic propellant in the propellant tank increases during flight due to heat input from surroundings. The propellant which temperature rises up over the required condition of turbo-pump remains as unusable propellant at the end of flight. In this paper the estimation method of the heat transfer coefficient at the upper layer of cryogenic propellant was presented. The heat transfer mode at the propellant upper layer was considered as conduction. Temperature distributions near propellant surface obtained from heat transfer coefficient were compared with test data to show the possibility of this method.

Design and Performance Evaluation of Ionic Liquid Propellant Thruster (이온성 액체 추진제 추력기 설계 및 성능 평가)

  • Kang, Shin-Jae;Lee, Jeong-Sub;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.645-648
    • /
    • 2011
  • Hydrazine which has been used as monopropellant shows high performance, but because of its high toxicity research for new green propellant that could replace hydrazine is going on. Ionic liquid propellant that is one of the green propellant has lower toxicity, higher specific impulse, and higher density than hydrazine. To design the thruster which use Hydroxylamine Nitrate (HAN), one of ionic liquid propellant, as a propellant, a quantity of catalyst for full decomposition of a propellant is needed. In this study, reference point for HAN thruster design could be suggested through a design of a small scale thruster which used HAN propellant, and propellant decomposition capability evaluation with characteristic velocity efficiency.

  • PDF

Estimation of Heat Transfer Coefficient at the Upper Layer of Cryogenic Propellant (극저온 추진제 상층부에서의 열전달계수 예측)

  • Kwon, Oh-Sung;Kim, Byung-Hun;Kil, Gyoung-Sub;Ko, Young-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.709-716
    • /
    • 2011
  • The temperature of cryogenic propellant in the propellant tank increases during flight due to heat input from surroundings. The propellant which temperature rises up over the required condition of turbo-pump remains as unusable propellant at the end of flight. In this paper the estimation method of the heat transfer coefficient at the upper layer of cryogenic propellant was presented. The heat transfer mode at the propellant upper layer was considered as conduction. Temperature distributions near propellant surface obtained from heat transfer coefficient were compared with test data to show the possibility of this method.

  • PDF

Thermal and Internal Ballistic Properties of Nitrocellulose Based Gun Propellant Including RDX (RDX를 함유한 니트로셀루로스 조성 총포 추진제의 열적 및 강내탄도 특성)

  • Kwon, Soonkil;Hwang, Junsik;Park, Minkyu;Kim, Myeongseop
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.4
    • /
    • pp.514-519
    • /
    • 2017
  • To develop a gun propellant composition with high insensitivity and high energy, we formulated a composition by adding RDX into the nitrocellulose(NC) based propellant. The flame temperature of the RDX added NC(RAN) propellant was higher than that of neat NC propellant. The kinetic muzzle energy of RAN propellant was close to that of JA2 propellant at room temperature($21^{\circ}C$). The difference of kinetic muzzle energy of RAN propellant between high and room temperature settings as well as between a low and room temperature settings were less compared to those of JA2 propellant.

Development of Components in Micro Solid Propellant Thruster. (마이크로 고체 추진제 추력기의 요소 개발)

  • 이종광;이대훈;권세진
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.147-150
    • /
    • 2003
  • The purpose of this research was to develope components of micro solid propellant thruster. Micro solid propellant thruster had four basic components: combustion chamber, nozzle, solid propellant and micro heater for ignition. A performance of micro heater and characteristic of solid propellant was investigated. Micro heater was fabricated by conventional MEMS process and Platinum layer was used for heating element. Effect of geometry parameters on micro heater was tested. The temperature responses of heater with respect to each parameters was compared for a given electrical power. The characteristic of solid propellant(HTPB/AP) was investigated to obtain burning velocity in small chamber. Additionally, a capacity of filling propellant with high viscosity in small chamber was checked to guarantee for the micro fabrication.

  • PDF

Demonstration of Propulsion System for Microsatellite Based on Hydrogen Peroxide in SOHLA-2L Project

  • Sahara, Hironori
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.235-242
    • /
    • 2008
  • An innovative Panel ExTension SATellite(PETSAT) and propulsion system for PETSAT, are presented in this paper. First, we outline what PETSAT is. Next, based on PETSAT ethos, design policy of the propulsion system is provided. According to the policy, we designed propulsion system and concretely estimated and assembled mono-propellant and bi-propellant systems, and it indicated that mono-propellant propulsion with 50-60 seconds of specific impulse and 1 N of thrust is probable. In the case of bi-propellant, 120-150 seconds of specific impulse is valid even based on the design policy. We conducted captive tests of mono-propellant and bi-propellant propulsions with a breadboard model of propulsion system for PETSAT, and obtained good operations and performances. Based on the test results, we designed and manufactured flight model propulsion system for PETSAT. We are planning to demonstrate it in SOHLA-2L project progressed by the Space Oriented Higashiosaka Leading Association(SOHLA). SOHLA-2L will be the first on-orbit demonstrator of PETSAT in 2008.

  • PDF

Design of a Microthruster using Laser-Sustained Solid Propellant Combustion

  • Kakami, Akira;Masaki, Shinichiro;Horisawa, Hideyuki;Tachibana, Takeshi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.605-610
    • /
    • 2004
  • Solid propellants allow thrusters to be light-weight, com-pact and robust because they require neither tank nor valve, Moreover, the solid propellant will not leak, spill or slosh. Consequently, the solid propellant thruster is one of the potential candidates for the microthruster. On the other hand, the control of the solid propellant combustion is difficult, since the conventional solid propellant continues to bum until all the stored propellant is consumed. Although particular devices like thrust reverser were designed to control the combustion, these devices were rarely used in the practical rocket motors. These devices rise thruster weight as well as complicate the thruster operation. In this study, a solid propellant microthruster using laser sustained combustion was designed in order to develop a high-efficiency microthruster overcoming the previously-mentioned difficulty. This designed thruster has semiconductor lasers and non-self-combustible solid propellants in addition to the conventional solid propellant thruster. In this designed thruster, the semiconductor laser controls the combustion of the non-self-combustible solid propellant. In order to demonstrate that the solid propellant combustion is controllable with laser, some non-self-combustible solid propellants were irradiated with the laser at a back-pressure of about 1㎪. A 40-W class Neodymium Yttrium Aluminum Garnet (ND:YAG) laser was used as a tentative alternate to the semiconductor laser. This experiment has shown that the solid propellant combustion was controllable with 10- W class laser irradiation.

  • PDF

Performance Study of Nozzleless Booster Casted to the High Density Solid Propellant with Zr as a Metal Fuel (고밀도 지르코늄(Zr) 금속연료 조성의 추진제를 이용한 무노즐 부스터 성능 연구)

  • Khil, Taeock;Jung, Eunhee;Lee, Kiyeon;Ryu, Taeha
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.38-51
    • /
    • 2018
  • This study was carried out to improve the performance characteristics of nozzleless boosters that are used in ramjet boosters. A propellant using Zr as the metal fuel was developed, which provided a higher density than the propellant using Al as the metal fuel. The developed propellant was cast using the nozzleless booster and a ground test was carried out by varying the length-to-diameter ratio (L/D ratio) of the propellant. From a comparison between the performance characteristics of propellants using Zr and Al, it was proved that the performance of the propellant using Zr is higher than that of propellant using Al, except for the specific impulse, under all tested conditions. As the length-to-diameter ratio was increased, the specific impulse of the propellant using Zr was decreased by 88% compared with that of the propellant with Al. However, because of the density difference between the propellants, the impulse density of the propellant with Zr was higher than that of the propellant with Al under all tested conditions.