• Title/Summary/Keyword: Prorocentrum donghaiense

Search Result 8, Processing Time 0.026 seconds

Spatial Distribution of Phytoplankton Community and Red Tide of Dinoflagellate, Prorocentrum donghaience in the East China Sea during Early Summer (동중국해 식물플랑크톤 군집의 공간분포와 와편모조류 적조)

  • 윤양호;박종식;서호영;황두진
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.132-141
    • /
    • 2003
  • We carried out a study on thermohaline structure and phytoplankton com munity in the East China Sea during early summer in 2005. As a result of marine environment and phytoplankton community, three characteristics of water type were identified. The former was characterized by the dominant species with diatoms, Chaetoceros lacinious, Ch. decipiens, Guninardia flaccida, Paralia sulcata, Pseudonitzschia pungens and Pseudosolenia calcar-avis in Chinese coastal waters, the secondary was done by lower water temperature, salinity and the dominant species with dinoflagellates, Prorocentrum donghaiense and Ceratium fusus, in over-all areas and the latter was done by the dominant species with coastal species of diatoms, Skeletonema costafum and Nitzschia longissima and silicoflagellate, Dictyocha speculum var. octopers in the transfer areas of Chinese continental coastal waters. Phytoplankton community in the surface layer identified a total of 66 species belonging to 36 genera. Dominant species was Prorocentrum donghaiense, Chaetoceros lacinious, Skeletonema costatum. Standing crops of phytoplankton in the surface layer flue tuated between $1.5 \times 10^4$cells $L^{-1}$ and $3.5\times 10^{5}$ cells $L^{-1}$. And the highest value appeared in the Changjiang estuaries with high dominance by diatoms and lowest one occurred in the southwestern area of Jeju Island with high dominance by dinoflagellates. Red tides with dinoflagellate, Prororcentrum donghaiense appeared in the frontal areas with mazimum cell density, $3.4\times 10^5$ cells $L^{-1}$. And outbreak environments was low water temperature under $20^{\circ}C$, and low salinity under 31.55 psu. The vertical distribution of red tide organisms went to about 30m depth from surface.

Feeding by common heterotrophic protist predators on seven Prorocentrum species

  • You, Ji Hyun;Jeong, Hae Jin;Kang, Hee Chang;Ok, Jin Hee;Park, Sang Ah;Lim, An Suk
    • ALGAE
    • /
    • v.35 no.1
    • /
    • pp.61-78
    • /
    • 2020
  • Species belonging to the dinoflagellate genus Prorocentrum are known to cause red tides or harmful algal blooms. To understand the dynamics of a Prorocentrum sp., its growth and mortality due to predation need to be assessed. However, there are only a few Prorocentrum spp. for which heterotrophic protist predators have been reported. We explored feeding by the common heterotrophic dinoflagellates Gyrodinium dominans, Oxyrrhis marina, Pfiesteria piscicida, Oblea rotunda, and Polykrikos kofoidii and the naked ciliate Strombidinopsis sp. (approx. 90 ㎛ cell length) on the planktonic species Prorocentrum triestinum, P. cordatum, P. donghaiense, P. rhathymum, and P. micans as well as the benthic species P. lima and P. hoffmannianum. All heterotrophic protists tested were able to feed on the planktonic prey species. However, O. marina and O. rotunda did not feed on P. lima and P. hoffmannianum, while G. dominans, P. kofoidii, and Strombidinopsis sp. did. The growth and ingestion rates of G. dominans and P. kofoidii on one of the seven Prorocentrum spp. were significantly different from those on other prey species. G. dominans showed the top three highest growth rates when it fed on P. triestinum, P. cordatum, and P. donghaiense, however, P. kofoidii had negative growth rates when fed on these three prey species. In contrast, P. kofoidii had a positive growth rate only when fed on P. hoffmannianum. This differential feeding on Prorocentrum spp. between G. dominans and P. kofoidii may provide different ecological niches and reduce competition between these two common heterotrophic protist predators.

The Characteristics of Spatio-Temporal Distribution on Phytoplankton in the Nakdong River Estuary, during 2013-2015 (낙동강 하구역에서 2013-2015년 식물플랑크톤의 시·공간분포 특성)

  • Yoo, Man-Ho;Youn, Seok-Hyun;Park, Kyung-Woo;Kim, A-Ram;Yoon, Sang-Chol;Suh, Young-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.6
    • /
    • pp.738-749
    • /
    • 2016
  • To understand the characteristics of the spatio-temporal distribution of phytoplankton after barrage construction in the Nakdong River Estuary, this study investigated relevant environmental parameters and phytoplankton status based on bi-monthly samples collected from the Nakdong River Estuary itself from February 2013 to December 2015. Environmental parameters did not differ significantly across these years but did vary between zones and seasons. The results suggested that the upper zone was dominated by fresh-water diatoms, green algae, and blue-green algae, whereas the lower zone was mostly dominated by dinoflagellates. The presence of Stephanodiscus spp., Asterionellopsis formosa, and Microcystis spp. in the upper zone was related to the inflow of freshwater discharge by artificial control of dyke gates. The dominant phytoplankton species in this zone were dependent on temperature, wind speed, DIP, and DIN, while those in the lower zone were mostly dependent on nutrients and wind speed. In addition, at the lower zone, there were negative correlations between Prorocentrum donghaiense, DIN, and wind speed, with its abundance being higher during the summer than other seasons. Analysis of temporal variations did not indicate any significant differences in the upper zone but did reveal variations among seasons at the lower zone. Except in 2014, the lower zone could be divided into periods dominated by diatoms (October-April) and dinoflagellates (June-August). These results suggest that the characteristics of the phytoplankton community were influenced by changes in the inflow of freshwater species and nutrients given the difference in the range affected by freshwater discharge.

Morphological Features of Marine Dinoflagellates from Jangmok Harbour in Jinhae Bay, Korea: A Case of 30 Species in the Orders Prorocentrales, Dinophysiales, Gonyaulacales and Gymnodiniales

  • Shin, Hyeon Ho;Kim, Eun Song;Li, Zhun;Youn, Joo Yeon;Jeon, Seul Gi;Oh, Seok Jin
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.3
    • /
    • pp.141-150
    • /
    • 2016
  • Most previous studies on dinoflagellates in Korean coastal areas were conducted without morphological descriptions and illustrations of the observed dinoflagellates. This indicates that the species and diversity of dinoflagellates may have been respectively misidentified and underestimated in the past, probably due to cell shrinkage, distortion and loss caused by sample fixation. This study provides information on the morphological observations of four dinoflagellate orders (Prorocentrales, Dinophysiales, Gonyaulacales and Gymnodiniales) from Jangmok Harbour in Jinhae Bay, Korea. The unfixed samples were collected weekly from December 2013 to February 2015. A total of 13 genera and 30 species were identified using light and scanning electron microscopy, although some samples were not clarified at the species level. Harmful dinoflagellates, Prorocentrum donghaiense, Tripos furca, Alexandrium affine, A. fundyense, Akashiwo sanguinea and Cochlodinium polykrikoides, were identified based on the morphological observations. The results also reflect the occurrence and identification of dinoflagellates that had not been previously recorded in Jangmok Harbour.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: II. Heterotrophic protists and their grazing impacts on red-tide organisms

  • Lim, An Suk;Jeong, Hae Jin;Seong, Kyeong Ah;Lee, Moo Joon;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Park, Jae Yeon;Jang, Tae Young;Yoo, Yeong Du
    • ALGAE
    • /
    • v.32 no.3
    • /
    • pp.199-222
    • /
    • 2017
  • Occurrence of Cochlodinium polykrikoides red tides have resulted in considerable economic losses in the aquaculture industry in many countries, and thus predicting the process of C. polykrikoides red tides is a critical step toward minimizing those losses. Models predicting red tide dynamics define mortality due to predation as one of the most important parameters. To investigate the roles of heterotrophic protists in red tide dynamics in the South Sea of Korea, the abundances of heterotrophic dinoflagellates (HTDs), tintinnid ciliates (TCs), and naked ciliates (NCs) were measured over one- or two-week intervals from May to Nov 2014. In addition, the grazing impacts of dominant heterotrophic protists on each red tide species were estimated by combining field data on red tide species abundances and dominant heterotrophic protist grazers with data obtained from the literature concerning ingestion rates of the grazers on red tide species. The abundances of HTDs, TCs, and NCs over the course of this study were high during or after red tides, with maximum abundances of 82, 49, and $35cells\;mL^{-1}$, respectively. In general, the dominant heterotrophic protists differed when different species caused red tides. The HTDs Polykrikos spp. and NCs were abundant during or after C. polykrikoides red tides. The mean and maximum calculated grazing coefficients of Polykrikos spp. and NCs on populations of co-occurring C. polykrikoides were $1.63d^{-1}$ and $12.92d^{-1}$, respectively. Moreover, during or after red tides dominated by the phototrophic dinoflagellates Prorocentrum donghaiense, Ceratium furca, and Alexandrium fraterculus, which formed serial red tides prior to the occurrence of C. polykrikoides red tides, the HTDs Gyrodinium spp., Polykrikos spp., and Gyrodinium spp., respectively were abundant. The maximum calculated grazing coefficients attributable to dominant heterotrophic protists on co-occurring P. donghaiense, C. furca, and A. fraterculus were 13.12, 4.13, and $2.00d^{-1}$, respectively. Thus, heterotrophic protists may sometimes have considerable potential grazing impacts on populations of these four red tide species in the study area.

Seasonal Distributional Characteristics of Phytoplankton Adjacent to the Oyster Farming Area of Hansan-Geoje Island (한산도-거제도 동부 굴 양식장주변에서 식물플랑크톤의 계절적 분포특성)

  • Lim, Young Kyun;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.647-658
    • /
    • 2018
  • The aim of this study is to investigate the seasonal changes of phytoplankton communities based on the environmental changes in a dense oyster farming area (Hansan-Geoje Island) from June to December 2016. The water temperature varied from $14^{\circ}C$ to $28.8^{\circ}C$ and its salinity ranged from 29.4 to 34.2 psu. Nitrate+nitrite was kept at c.a. $3.0{\mu}M$ on the surface layer from June to July, below the concentration limit in August and early September, and then gradually increased from late September. Ammonia was high on July 20 and August 10, and its seasonal characteristics were not clear. Phosphate ranged from 0.01 to $0.7{\mu}M$ on the surface layer, and its seasonal changes were similar to those of nitrate+nitrite. Mean silicate concentrations were $10.7{\mu}M$ on the surface and $15.7{\mu}M$ in the bottom layer, and it was not acted as a limiting factor for the growth of phytoplankton. Among the phytoplankton community, Bacillariophyceae, Dinophyceae and Cryptophyceae was 61.2%, 22.5%, and 13.6%, respectively. In late June, dinoflagellate Prorocentrum donghaiense was dominant in the outer waters(St. T1), later on, Cryptomonas spp. and Chaetoceros spp. were dominant, respectively. From late September to October, diatoms Pseudo-nitzschia spp. and Chaetoceros spp. were stimulated under non-stratified condition after the typhoon. In December, A. sanguinea was found to be $1.7{\times}10^5cells\;L^{-1}$. Seasonally, relative high phytoplankton biomass may be favorable to maintain high production of filter feeder oyster in the dense oyster farming areas of Hansan and Geoje Island.

Ichthyotoxic Cochlodinium polykrikoides red tides offshore in the South Sea, Korea in 2014: I. Temporal variations in three-dimensional distributions of red-tide organisms and environmental factors

  • Jeong, Hae Jin;Lim, An Suk;Lee, Kitack;Lee, Moo Joon;Seong, Kyeong Ah;Kang, Nam Seon;Jang, Se Hyeon;Lee, Kyung Ha;Lee, Sung Yeon;Kim, Mi Ok;Kim, Ji Hye;Kwon, Ji Eun;Kang, Hee Chang;Kim, Jae Seong;Yih, Wonho;Shin, Kyoungsoon;Jang, Poong Kook;Ryu, Joo-Hyung;Kim, Sung Young;Park, Jae Yeon;Kim, Kwang Young
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.101-130
    • /
    • 2017
  • The ichthyotoxic Cochlodinium polykrikoides red tides have caused great economic losses in the aquaculture industry in the waters of Korea and other countries. Predicting outbreak of C. polykrikoides red tides 1-2 weeks in advance is a critical step in minimizing losses. In the South Sea of Korea, large C. polykrikoides red tide patches have often been recorded offshore and transported to nearshore waters. To explore the processes of offshore C. polykrikoides red tides, temporal variations in 3-dimensional (3-D) distributions of red tide organisms and environmental parameters were investigated by analyzing 4,432 water samples collected from 2-5 depths of 60 stations in the South Sea, Korea 16 times from May to Nov, 2014. In the study area, the vegetative cells of C. polykrikoides were found as early as May 7, but C. polykrikoides red tide patches were observed from Aug 21 until Oct 9. Cochlodinium red tides occurred in both inner and outer stations. Prior to the occurrence of large C. polykrikoides red tides, the phototrophic dinoflagellates Prorocentrum donghaiense (Jun 12 to Jul 11), Ceratium furca (Jul 11 to Aug 21), and Alexandrium fraterculus (Aug 21) formed red tides in sequence, and diatom red tides formed 2-3 times without a certain distinct pattern. The temperature for the optimal growth of these four red tide dinoflagellates is known to be similar. Thus, the sequence of the maximum growth rates of P. donghaiense > C. furca > A. fraterculus > C. polykrikoides may be partially responsible for this sequence of red tides in the inner stations following high nutrients input in the surface waters because of heavy rains. Furthermore, Cochlodinium red tides formed and persisted at the outer stations when $NO_3$ concentrations of the surface waters were < $2{\mu}M$ and thermocline depths were >20 m with the retreat of deep cold waters, and the abundance of the competing red-tide species was relatively low. The sequence of the maximum swimming speeds and thus potential reachable depths of C. polykrikoides > A. fraterculus > C. furca > P. donghaiense may be responsible for the large C. polykrikoides red tides after the small blooms of the other dinoflagellates. Thus, C. polykrikoides is likely to outgrow over the competitors at the outer stations by descending to depths >20 m and taking nutrients up from deep cold waters. Thus, to predict the process of Cochlodinium red tides in the study area, temporal variations in 3-D distributions of red tide organisms and environmental parameters showing major nutrient sources, formation and depth of thermoclines, intrusion and retreat of deep cold waters, and the abundance of competing red tide species should be well understood.

Seasonal Variation of Primary Producer Phytoplankton Community in the Vicinity of the Oyster Farming Area between Tongyeong-Saryang Island (통영-사량도 굴 양식장 주변 해역에서 일차 생산자 식물플랑크톤 군집의 계절적 변화)

  • Lim, Young Kyun;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.492-500
    • /
    • 2017
  • The purpose of this study was to investigate the seasonal distribution of phytoplankton as prey for oysters and to characterize the environmental factors controlling their abundance from June 2016 to May 2017, in the northeast coast between Tongyeong and Saryang Island, particularly for the oyster farming area. During the survey period, water temperature changed from $7.54^{\circ}C$ in February to $29.5^{\circ}C$ in August. The abnormal high temperature persisted during one month in August. Salinity was low due to summer rainfall and typhoon. The lowest level was 30.68 psu in September, and it peaked at 34.24 psu in May. The dissolved oxygen (DO) concentration ranged from $6.0-9.45mg\;L^{-1}$, and the DO concentration in the surface layer was like that in the bottom layers. The seasonal trends of pH were also like those of DO. The pH ranged from 7.91 to 8.50. Nitrate with nitrite, phosphate, and silicate concentrations ranged from $0.14{\mu}M$ to $7.66{\mu}M$, from $0.01{\mu}M$ to $4.16{\mu}M$, and from $0.27{\mu}M$ to $20.33{\mu}M$, respectively. The concentration of chlorophyll a (Chl. a) ranged from $0.37{\mu}g\;L^{-1}$ to $2.44{\mu}g\;L^{-1}$ in the surface layer. The annual average concentration was $1.26{\mu}g\;L^{-1}$. The annual mean phytoplankton community comprised Bacillariophyta (69%), Dinophyta (17%), and Cryptophyta (10%), respectively. Dinoflagellate Prorocentrum donghaiense in June was the most dominant at 90%. In the summer, diatom Chaetoceros decipiens, Rhizosolenia setigera and Pseudo-nitzschia delicatissima were dominant. These species shifted to diatom Chaetoceros spp. and Crytophyta species in autumn. In the winter, high densities of Skeletonema spp. and Eucampia zodiacus were maintained. Therefore, the researchers thought that the annual mean Chl. a concentration was relatively lower to sustain oyster feeding, implying that the prey organism (i.e., phytoplankton) was greatly controlled by continuous filter feeding behavior of oyster in the vicinity area of the oyster culture farm.