• Title/Summary/Keyword: Prospects for climate change

Search Result 26, Processing Time 0.027 seconds

Development of a Climate Change Vulnerability Assessment Analysis Tool: Based on the Vulnerability Assessment of Forest Fires in Chungcheongnam-do (기후변화 취약성 평가 분석도구 개발에 관한 연구: 충남지역 산불 취약성을 중심으로)

  • Yoon, Soo Hyang;Lee, Sang Sin
    • Journal of Climate Change Research
    • /
    • v.8 no.3
    • /
    • pp.275-285
    • /
    • 2017
  • Chungnam region has established and executed the 2nd Climate Change Adaptation Initiative Execution Plan (2017~2021) based on the Framework Act on Low Carbon, Green Growth. The Execution Plan is established based on the results of climate change vulnerability assessment using the CCGIS, LCCGIS, and VESTAP analysis tools. However, the previously developed climate change vulnerability assessment tools (CCGIS, LCCGIS, VESTAP) cannot reflect the local records and the items and indices of new assessment. Therefore, this study developed a prototype of climate change vulnerability assessment analysis tool that, unlike the previous analysis tools, designs the items and indices considering the local characteristics and allows analysis of grid units. The prototype was used to simulate the vulnerability to forest fires of eight cities and seven towns in Chungcheongnam-do Province in the 2010s, 2020s, and 2050s based on the RCP (Representative Concentration Pathways) 8.5 Scenario provided by the Korea Meteorological Administration. Based on the analysis, Chungcheongnam-do Province's vulnerability to forest fires in the 2010s was highest in Seocheon-gun (0.201), followed by Gyeryong-si (0.173) and Buyeo-gun (0.173) and the future prospects in the 2050s was highest in Seocheon-gun (0.179), followed by Gyeryong-si (0.169) and Buyeo-gun (0.154). The area with highest vulnerability to forest fires in Chungcheongnam-do Province was Biin-myeon, Seocheon-gun and the area may become most vulnerable was Pangyo-myeon, Seocheon-gun. The prototype and the results of analysis may be used to establish the directions and strategies in regards to the vulnerability to wild fires to secure each local government's 2nd execution plan and attainability.

Development of Extreme Event Analysis Tool Base on Spatial Information Using Climate Change Scenarios (기후변화 시나리오를 활용한 공간정보 기반 극단적 기후사상 분석 도구(EEAT) 개발)

  • Han, Kuk-Jin;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.3
    • /
    • pp.475-486
    • /
    • 2020
  • Climate change scenarios are the basis of research to cope with climate change, and consist of large-scale spatio-temporal data. From the data point of view, one scenario has a large capacity of about 83 gigabytes or more, and the data format is semi-structured, making it difficult to utilize the data through means such as search, extraction, archiving and analysis. In this study, a tool for analyzing extreme climate events based on spatial information is developed to improve the usability of large-scale, multi-period climate change scenarios. In addition, a pilot analysis is conducted on the time and space in which the heavy rain thresholds that occurred in the past can occur in the future, by applying the developed tool to the RCP8.5 climate change scenario. As a result, the days with a cumulative rainfall of more than 587.6 mm over three days would account for about 76 days in the 2080s, and localized heavy rains would occur. The developed analysis tool was designed to facilitate the entire process from the initial setting through to deriving analysis results on a single platform, and enabled the results of the analysis to be implemented in various formats without using specific commercial software: web document format (HTML), image (PNG), climate change scenario (ESR), statistics (XLS). Therefore, the utilization of this analysis tool is considered to be useful for determining future prospects for climate change or vulnerability assessment, etc., and it is expected to be used to develop an analysis tool for climate change scenarios based on climate change reports to be presented in the future.

Agricultural biotechnology: Opportunities and challenges associated with climate change (기후변화에 대응한 농업생명공학의 기회와 도전)

  • Chang, An-Cheol;Choi, Ji-Young;Lee, Shin-Woo;Kim, Dong-Hern;Bae, Shin-Chul
    • Journal of Plant Biotechnology
    • /
    • v.38 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Considering that the world population is expected to total 9 billion by 2050, it will clearly be necessary to sustain and even accelerate the rate of improvement in crop productivity. In the 21st century, we now face another, perhaps more devastating, environmental threat, namely climate change, which could cause irreversible damage to agricultural ecosystem and loss of production potential. Enhancing intrinsic yield, plant abiotic stress tolerance, and pest and pathogen resistance through agricultural biotechnology will be a critical part of feeding, clothing, and providing energy for the human population, and overcoming climate change. Development and commercialization of genetically engineered crops have significantly contributed to increase of crop yield and farmer's income, decrease of environmental impact associated with herbicide and insecticide, and to reduction of greenhouse gas emissions from this cropping area. Advances in plant genomics, proteomics and system biology have offered an unprecedented opportunities to identify genes, pathways and networks that control agricultural important traits. Because such advances will provide further details and complete understanding of interaction of plant systems and environmental variables, biotechnology is likely to be the most prominent part of the next generation of successful agricultural industry. In this article, we review the prospects for modification of agricultural target traits by genetic engineering, including enhancement of photosynthesis, abiotic stress tolerance, and pest and pathogen resistance associated with such opportunities and challenges under climate change.

How Sensitive is the Earth Climate to a Runaway Carbon Dioxide? (기후는 이산화탄소 증가에 얼마나 민감한가?)

  • Choi, Yong-Sang
    • Journal of the Korean earth science society
    • /
    • v.32 no.2
    • /
    • pp.239-247
    • /
    • 2011
  • The United Nations Framework Convention on Climate Change and the corresponding national low-carbon policy should be grounded on the scientific understanding of climate sensitivity to the increase in CO2 concentration. This is, however, precluded by the fact that current estimates of the climate sensitivity highly vary. To understand the scientific background, limitations, and prospects of the climate sensitivity study, this paper reviews, as objectively as possible, the most recent results on the sensitivity issue. Theoretically, the climate sensitivity hinges on climate feedbacks from various atmospheric and surface physical processes. Especially cloud and sea-ice processes associated with shortwave radiation are known to have largest uncertainty, resulting in an inaccurate estimation of climate sensitivity. For this reason, recent observational studies using satellite data suggest sensitivity lower than or similar to those estimated by climate models (2-5 K per doubled CO2).

The Carbon Sequestration Potential of Forestry Sector: Bangladesh Context

  • Sohel, Md. Shawkat Islam;Rana, Md. Parvez;Alam, Mahbubul;Akhter, Sayma;Alamgir, Mohammed
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.157-165
    • /
    • 2009
  • Forests potentially contribute to global climate change through their influence on the global carbon (C) cycle. The Kyoto Protocol provides for the involvement of developing countries in an atmospheric greenhouse gas reduction regime under its Clean Development Mechanism (CDM). Carbon credits are gained from reforestation and afforestation activities in developing countries. Bangladesh, a densely populated tropical country in South Asia, has a huge degraded forestland, which can be reforested by CDM projects. To realize the potential of the forestry sector in developing countries like Bangladesh for full-scale emission mitigation, the carbon sequestration potential should be integrated with the carbon trading system under the CDM of the Kyoto Protocol. This paper discusses the prospects of carbon trading in Bangladesh, in relation to the CDM, in the context of global warming.

  • PDF

Current situation and future prospects for beef production in Europe - A review

  • Hocquette, Jean-Francois;Ellies-Oury, Marie-Pierre;Lherm, Michel;Pineau, Christele;Deblitz, Claus;Farmer, Linda
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.7
    • /
    • pp.1017-1035
    • /
    • 2018
  • The European Union (EU) is the world's third largest producer of beef. This contributes to the economy, rural development, social life, culture and gastronomy of Europe. The diversity of breeds, animal types (cows, bulls, steers, heifers) and farming systems (intensive, extensive on permanent or temporary pastures, mixed, breeders, feeders, etc) is a strength, and a weakness as the industry is often fragmented and poorly connected. There are also societal concerns regarding animal welfare and environmental issues, despite some positive environmental impacts of farming systems. The EU is amongst the most efficient for beef production as demonstrated by a relative low production of greenhouse gases. Due to regional differences in terms of climate, pasture availability, livestock practices and farms characteristics, productivity and incomes of beef producers vary widely across regions, being among the lowest of the agricultural systems. The beef industry is facing unprecedented challenges related to animal welfare, environmental impact, origin, authenticity, nutritional benefits and eating quality of beef. These may affect the whole industry, especially its farmers. It is therefore essential to bring the beef industry together to spread best practice and better exploit research to maintain and develop an economically viable and sustainable beef industry. Meeting consumers' expectations may be achieved by a better prediction of beef palatability using a modelling approach, such as in Australia. There is a need for accurate information and dissemination on the benefits and issues of beef for human health and for environmental impact. A better objective description of goods and services derived from livestock farming is also required. Putting into practice "agroecology" and organic farming principles are other potential avenues for the future. Different future scenarios can be written depending on the major driving forces, notably meat consumption, climate change, environmental policies and future organization of the supply chain.

Estimates of the Water Cycle and River Discharge Change over the Global Land at the End of 21st Century Based on RCP Scenarios of HadGEM2-AO Climate Model (기후모델(HadGEM2-AO)의 대표농도경로(RCP) 시나리오에 따른 21세기 말 육지 물순환 및 대륙별 하천유출량 변화 추정)

  • Kim, Moon-Hyun;Kang, Hyun-Suk;Lee, Johan;Baek, Hee-Jeong;Cho, ChunHo
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.425-441
    • /
    • 2013
  • This study investigates the projections of water cycle, budget and river discharge over land in the world at the end of twenty-first century simulated by atmosphere-ocean climate model of Hadley Centre (HadGEM2-AO) and total runoff integrating pathways (TRIP) based on the RCP scenario. Firstly, to validate the HadGEM2-AO hydrology, the surface water states were evaluated for the present period using precipitation, evaporation, runoff and river discharge. Although this model underestimates the annual precipitation about 0.4 mm $mon^{-1}$, evaporation 3.7 mm $mon^{-1}$, total runoff 1.6 mm $mon^{-1}$ and river discharge 8.6% than observation and reanalysis data, it has good water balance in terms of inflow and outflow at surface. In other words, it indicates the -0.3 mm $mon^{-1}$ of water storage (P-E-R) compared with ERA40 showing -2.4 mm $mon^{-1}$ for the present hydrological climate. At the end of the twenty-first century, annual mean precipitation may decrease in heavy rainfall region, such as northern part of South America, central Africa and eastern of North America, but for increase over the Tropical Western Pacific and East Asian region. Also it can generally increase in high latitudes inland of the Northern Hemisphere. Spatial patterns of annual evaporation and runoff are similar to that of precipitation. And river discharge tends to increase over all continents except for South America including Amazon Basin, due to increased runoff. Overall, HadGEM2-AO prospects that water budget for the future will globally have negative signal (-8.0~-0.3% of change rate) in all RCP scenarios indicating drier phase than the present climate over land.

Evaluation of Performance and Uncertainty for Multi-RCM over CORDEX-East Asia Phase 2 region (CORDEX-동아시아 2단계 영역에 대한 다중 RCM의 모의성능 및 불확실성 평가)

  • Kim, Jin-Uk;Kim, Tae-Jun;Kim, Do-Hyun;Kim, Jin-Won;Cha, Dong-Hyun;Min, Seung-Ki;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.30 no.4
    • /
    • pp.361-376
    • /
    • 2020
  • This study evaluates multiple Regional Climate Models (RCMs) in simulating temperature and precipitation over the Far East Asia (FEA) and estimates the portions of the total uncertainty originating in the RCMs and the driving Global Climate Models (GCMs) using nine present-day (1981~2000) climate data obtained from combinations of three GCMs and three RCMs in the CORDEX-EA phase2. Downscaling using the RCMs generally improves the present temperature and precipitation simulated in the GCMs. The mean temperature climate in the RCM simulations is similar to that in the GCMs; however, RCMs yield notably better spatial variability than the GCMs. In particular, the RCMs generally yield positive added values to the variability of the summer temperature and the winter precipitation. Evaluating the uncertainties by the GCMs (VARGCM) and the RCMs (VARRCM) on the basis of two-way ANOVA shows that VARRCM is greater than VARGCM in contrast to previous studies which showed VARGCM is larger. In particular, in the winter temperature, the ocean has a very large VARRCM of up to 30%. Precipitation shows that VARRCM is greater than VARGCM in all seasons, but the difference is insignificant. In the following study, we will analyze how the uncertainty of the climate model in the present-day period affects future climate change prospects.

Comparison of farmer happiness and rural life satisfaction through the survey of major agricultural products panel

  • Park, Kye Won;Choe, Seung Hui;Jo, Seung Yeon;Kim, In Jae;Min, Byung Ik
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.307-307
    • /
    • 2017
  • There is a growing need to understand how local, farm household, and elementary units are responding to changes in agricultural conditions due to increased internal and external agrarian conditions and increased uncertainty in agricultural management due to increasing FTA and climate change. Therefore, we analyze dynamics of changes through more detailed and precise gathering of information related to agricultural products and DB, and by analyzing the satisfaction level of the first year panel survey by constructing a producer panel for utilization in agricultural research and policy. A total of 500 farmers in the producer panel who mainly grow rice, garlic, onion, strawberry, apple were collected through questionnaires. The actual analysis used data from a total of 393 farm households, including 82 farms of rice, 51 farms of apple, 100 farms of garlic, 88 farms of onion and 72 farmhouses of strawberry. The distribution by age was similar to the distribution of rural ages in Korea, with 2.8% under 30s, 17.6% in 40s, 32.4% in 50s, 37.5% in 60s and 9.7% in 70s. Panel happiness and rural life satisfaction were examined using the 7 - point Likert scale and the analysis method was one - way ANOVA. The results showed that the happiness of garlic and strawberry cultivator was significantly higher than that of rice and onion cultivator. However, the satisfaction of rural life did not show any difference among the cultivars. As a result of difference verification about Agricultural Outlook and Crop-specific Outlook after 5 years, there was no difference between the crops in terms of prospects for Korean agriculture after five years, but a survey of industrial prospects for crops after five years showed that the rice growers have a significantly negative outlook compared to garlic, onion and strawberry growers, and garlic and onion growers have a more positive outlook than rice and apple growers As a result of verifying whether there is a difference in ages between the agricultural prospects and the industrial prospects by crops after 5 years, there was no difference between the ages of prospects for Korean agriculture after 5 years, However, in the survey on industrial prospects by crops after 5 years, 40s were more positive than 60s.

  • PDF

Prospects of future extreme precipitation in South-North Korea shared river basin according to RCP climate change scenarios (RCP 기후변화 시나리오를 활용한 남북공유하천유역 미래 극한강수량 변화 전망)

  • Yeom, Woongsun;Park, Dong-Hyeok;Kown, Minsung;Ahn, Jaehyun
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.9
    • /
    • pp.647-655
    • /
    • 2019
  • Although problems such as river management and flood control have occurred continuously in the Imjin and Bukhan river basin, which are shared by South and North Korea, efforts to manage the basin have not been carried out consistently due to limited cooperation. As the magnitude and frequency of hydrologic phenomena are changing due to global climate change, it is necessary to prepare countermeasures for the rainfall variation in the shared river basin area. Therefore, this study was aimed to project future changes in extreme precipitation in South-North Korea shared river basin by applying 13 Global Climate Models (GCM). Results showed that the probability rainfall compared to the reference period (1981-2005) of the shared river basin increased in the future periods of 2011-2040, 2041-2070 and 2071-2100 under the Representative Concentration Pathways (RCP)4.5 and RCP8.5 scenarios. In addition, the rainfall frequency over the 20-year return period was increased in all periods except for the future periods of 2041-2070 and 2071-2100 under the RCP4.5 scenario. The extreme precipitation in the shared river basin has increased both in magnitude and frequency, and it is expected that the region will have a significant impact from climate change.