• Title/Summary/Keyword: Protection of Dopaminergic neurons

Search Result 6, Processing Time 0.023 seconds

Thuja orientalis leaves extract protects dopaminergic neurons against MPTP-induced neurotoxicity via inhibiting inflammatory action (MPTP로 유도된 Parkinson's disease 동물 모델에서 항염증효과를 통한 측백엽의 도파민신경보호 효과)

  • Park, Gunhyuk;Kim, Hyo Geun;Ju, Mi Sun;Kim, Ae-Jung;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.29 no.3
    • /
    • pp.27-33
    • /
    • 2014
  • Objectives : The aim of this study was to investigate the protective effect of extract of Thuja orientalis leaves (TOFE) against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced neurotoxicity by inhibition of inflammation in in vitro and in vivo models of Parkinson's disease (PD). Methods : We evaluated the effect of TOFE against lipopolysaccharide (LPS)/1-methyl-4-phenylpyridinium ($MPP^+$) toxicity using nitric oxide (NO) assay, inducible NO synthase and cyclooxygenase 2 western blot, tyrosine hydroxylase and microglia activation immunohistochemistry (IHC) in BV2 cell, primary rat mesencephalic neurons, or C57BL/6 mice. We also evaluated the effect of TOFE in mice PD model induced by MPTP. C57BL/6 mice were treated with TOFE 50 mg/kg for 5 days and were injected intraperitoneally with four administrations of MPTP on the last day. We conducted behavioral tests and IHC analysis to see how TOFE affect MPTP-induced neuronal loss of dopaminergic neurons in substantia nigra pars compacta (SNpc) and striatum (ST) of mice. To assess the anti-inflammation effects, we carried out glial fibrillary acidic protein and macrophage-1 antigen integrin alpha M in IHC in SNpc and ST of mice. Results : In an in vitro system, TOFE decreasesd NO generations in BV2 cells. TOFE protected dopaminergic cells against LPS or $MPP^+$-induced toxicity in primary mesencephalic dopaminergic neurons. In vivo system, TOFE at 50 mg/kg treated group showed improved motor deteriorations than the MPTP only treated group and TOFE significantly protected striatal dopaminergic damage from MPTP-induced neurotoxicity in mice. Moreover, TOFE inhibited activation of astrocyte and microglia in SNpc and ST of the mice. Conclusions : We concluded that TOFE showed anti-parkinsonian effect by protection of dopaminergic neurons against MPTP toxicity through anti-inflammatory actions.

Neuroprotective Effect of Yukul-tang against the Oxidative Stress (육울탕(六鬱湯)의 산화적 스트레스에 대한 뇌세포 보호효과)

  • Jung, Sun-Hyung;Lee, Jin-Moo;Lee, Chang-Hoon;Cho, Jung-Hoon;Jang, Jun-Bock;Lee, Kyung-Sub
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.22 no.1
    • /
    • pp.15-30
    • /
    • 2009
  • Purpose: In this rapidly aging society, the research and development of traditional oriental medicine treatment is one of the critical factors to protect the increasing neuro-degenerative disorders. In this study, we wanted to verify the effect of Yukul-tang (YUT) on neuro-degenerative disease model by assessing the antioxidant and anti-inflammation effects. Methods: To assess the antioxidant effects of YUT, we carried out DPPH radical and ABTS radical scavenging assays and determined the total polyphenolic contents in YUT. To evaluate the neuro-protective effects of YUT, we performed the MTT and ROS assays and TH immunohistochemistry, NO and TNF-${\alpha}$ assays in SH-SY5Y or mesencephalic dopaminergic neurons damaged by 6-OHDA. Results: The treatment of YUT showed eliminating effects on DPPH radical and ABTS radical. it showed deterring effects on ROS, NO and TNF-${\alpha}$ and protecting effects on TH-positive cell in SH-SY5Y cells or mesencephalic dopaminergic neurons. Especially in the case of the treatment of YUT with 0.2ug/mL + 6-OHDA 10uM, the protective effect on dopaminergic neurons was most outstanding. Conclusion: In this study, we have demonstrated that YUT has an antioxidant effect and a neuro-protective effect on neuro-degenerative disease model caused by neurotoxin such as 6-OHDA. The results of our present study suggest that YUT can be useful agent to prevent and to treat neuro-degenerative diseases.

The Protective Effect of Chunghyul-dan(Qingxuedan) Against 6-hydroxydopamine Induced Neurotoxicity. (청혈단(淸血丹)의 6-hydroxydopamine에 의해 유발된 독성에 대한 신경세포보호효과)

  • Kim, Gwang-Ho;Kim, Jong-Woo;Chung, Sun-Yong;Cho, Sung-Hoon;Oh, Myun-Sook;Hwang, Wei-wan
    • Journal of Oriental Neuropsychiatry
    • /
    • v.20 no.1
    • /
    • pp.21-42
    • /
    • 2009
  • Objectives : This Study was performed to assess the antioxidant and neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells and primary rat mesencephalic dopaminergic neurons. Methods : The anioxidant effect was investigated using the DPPH radical and ABTS cation scavenging assays and total polyphenol amout of Chunghyul-dan(Qingxuedan). The neuroprotective effect of Chunghyul-dan(Qingxuedan) in PC12 cells was evaluated using MTT assay. The scavenging activity of Chunghyul-dan(Qingxuedan) on ROS production induced by 6-OHDA(6-hydroxydopamine) in PC12 cells was evaluated, as well as the attenuating effect on GSH reduction. Finally, we examined the neuroprotective effect of Chunghyul-dan(Qingxuedan) against 6-0HDA-induced toxicity in the primary culture of rat mesencephalic doperminergic neurons. Results : Chunghyul-dan(Qingxuedan) showed concentration-dependent scavenging activities in DPPH radical and ABTS cation scavenging assays and it was not cytotoxic to PC12 cells. In postand co-treatment, Chunghyul-dan(Qingxuedan) protected PC12 cells from the 6-OHDA induced toxicity at 50 and 100 ${\mu}$g/mL significantly. And Chunghyu!-dan(Qingxuedan) decreased the 6-OHDA induced ROS production at a dose dependent manner, while increaing the 6-OHDA induced GSH reduction at 50 and 100 ${\mu}$g/mL significantly. Finally, Chunghyul-dan(Qingxuedan) showed signicant protection of rat mescencephalic dopaminergic neurons from 6-OHDA at 1 ${\mu}$g/mL. Conclusions : These results demonstrate that Chunghyul-dan(Qingxuedan) has the antioxidant and neuroprotective effect against 6-0HDA induced cytotoxicity through decreasing ROS production and increasing GSH reduction.

  • PDF

Comparative Study of the Neuroprotective Effect of Sihogyeji-tang, Sihosogan-tang, and Sihocheonggan-tang on an MPTP-Induced Parkinson's Disease Mouse Model (MPTP로 유도된 파킨슨병 생쥐 모델에 대한 시호계지탕, 시호소간탕, 시호청간탕의 신경세포 보호 효과 비교 연구)

  • Ji Eun Seo;Hanul Lee;Chang-Hwan Bae;Dong Hak Yoon;Hee-Young Kim;Seungtae Kim
    • Korean Journal of Acupuncture
    • /
    • v.40 no.3
    • /
    • pp.90-98
    • /
    • 2023
  • Objectives : Parkinson's disease (PD) is the second most common neurodegenerative disorder worldwide and is characterized by the loss of the dopaminergic neurons in the substantia nigra (SN). In a previous in vitro study, we demonstrated that Sihogyeji-tang (SG), Sihosogan-tang (SS), and Sihocheonggan-tang (SC) have the potential to be candidate medicines for PD. This study aimed to compare the neuroprotective effect of SG, SS, and SC using 1-methyl-4-phenyl-1,2,3,6-tetrahydrophridine (MPTP)-induced PD mouse model. Methods : Eight-week-old male C57BL/6 mice were intraperitoneally administered with 30 mg/kg of MPTP for 5 days and orally administered SG, SS and SC for 12 days from the first MPTP injection. Motor function was assessed using the pole test and the rotarod test. Dopaminergic neuronal survival in the SN and striatum was evaluated through tyrosine-hydroxylase immunohistochemistry. Results : MPTP administration resulted in behavioral impairment and dopaminergic neuronal death in the SN and striatum. In the pole test, treatment with SG, SS, and SC alleviated the MPTP-induced motor dysfunction on day 5 and 12. In the rotarod test, SS and SG alleviated the MPTP-induced motor dysfunction on day 5, while only SS showed improvement on day 12. SS and SG significantly protected dopaminergic neurons in the SN from MPTP toxicity, and all three compounds (SG, SS, and SC) showed significant protection in the striatum. Notably, SS demonstrated superior efficacy in suppressing MPTP-induced motor dysfunction and dopaminergic neuronal death compared to SG and SC. Conclusions : These findings suggest that SS is the most effective formula among SG, SS, and SC for PD, indicating its potential role in the treatment of PD.

Pyruvate Dehydrogenase Kinase Protects Dopaminergic Neurons from Oxidative Stress in Drosophila DJ-1 Null Mutants

  • Lee, Yoonjeong;Kim, Jaehyeon;Kim, Hyunjin;Han, Ji Eun;Kim, Sohee;Kang, Kyong-hwa;Kim, Donghoon;Kim, Jong-Min;Koh, Hyongjong
    • Molecules and Cells
    • /
    • v.45 no.7
    • /
    • pp.454-464
    • /
    • 2022
  • DJ-1 is one of the causative genes of early-onset familial Parkinson's disease (PD). As a result, DJ-1 influences the pathogenesis of sporadic PD. DJ-1 has various physiological functions that converge to control the levels of intracellular reactive oxygen species (ROS). Based on genetic analyses that sought to investigate novel antioxidant DJ-1 downstream genes, pyruvate dehydrogenase (PDH) kinase (PDK) was demonstrated to increase survival rates and decrease dopaminergic (DA) neuron loss in DJ-1 mutant flies under oxidative stress. PDK phosphorylates and inhibits the PDH complex (PDC), subsequently downregulating glucose metabolism in the mitochondria, which is a major source of intracellular ROS. A loss-of-function mutation in PDK was not found to have a significant effect on fly development and reproduction, but severely ameliorated oxidative stress resistance. Thus, PDK plays a critical role in the protection against oxidative stress. Loss of PDH phosphatase (PDP), which dephosphorylates and activates PDH, was also shown to protect DJ-1 mutants from oxidative stress, ultimately supporting our findings. Further genetic analyses suggested that DJ-1 controls PDK expression through hypoxia-inducible factor 1 (HIF-1), a transcriptional regulator of the adaptive response to hypoxia and oxidative stress. Furthermore, CPI-613, an inhibitor of PDH, protected DJ-1 null flies from oxidative stress, suggesting that the genetic and pharmacological inhibition of PDH may be a novel treatment strategy for PD associated with DJ-1 dysfunction.

Protective Effect of Korean Red Ginseng against 6-Hydroxydopamine-induced Nitrosative Cell Death via Fortifying Cellular Defense System (6-Hydroxydopamine으로 유도된 질소적 세포 사멸에 대한 고려홍삼 추출물의 보호효과)

  • Lee, Chan;Jang, Jung-Hee;Park, Gyu Hwan
    • YAKHAK HOEJI
    • /
    • v.60 no.2
    • /
    • pp.92-99
    • /
    • 2016
  • Parkinson's disease (PD) is one of the representative neurodegenerative movement disorders with the selective loss of dopaminergic neurons in the substantia nigra. 6-Hydroxydopamine (6-OHDA) is widely used as an experimental model system to mimic PD and has been reported to cause neuronal cell death via oxidative and/or nitrosative stress. Therefore, daily intake of dietary or medicinal plants which fortifies cellular antioxidant capacity can exert neuroprotective effects in PD. In the present study, we have investigated the protective effect of Korean red ginseng (KRG) against 6-OHDA-induced nitrosative death in C6 glioma cells. Treatment of C6 cells with 6-OHDA decreased cell viability and increased expression of inducible nitric oxide synthase, production of nitric oxide as well as peroxynitrite, and formation of nitrotyrosine. 6-OHDA led to apoptotic cell death as determined by decreased Bcl-2/Bax, phosphorylation of JNK, activation of caspase-3, and cleavage of PARP. Conversely, pretreatment of C6 cells with KRG attenuated 6-ODHA-induced cytotoxicity, apoptosis, and nitrosative damages. To further elucidate the molecular mechanism of KRG protection against 6-OHDA-induced nitrosative cell death, we have focused on the cellular self-defense molecules against exogenous noxious stimuli. KRG treatment up-regulated heme oxygenase-1 (HO-1), a key antioxidant enzyme essential for cellular defense against oxidative and/or nitrosative stress via activation of Nrf2. Taken together, these findings suggest KRG may have preventive and/or therapeutic potentials for the management of PD.