• Title/Summary/Keyword: Protein self-assembly

Search Result 38, Processing Time 0.039 seconds

Surface Plasmon Resonance Immunosensor for Detection of Legionella pneumophila

  • Oh, Byung-Keun;Lee, Woochang;Bae, Young-Min;Lee, Won-Hong;Park, Jeong-Woo
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.8 no.2
    • /
    • pp.112-116
    • /
    • 2003
  • An immunosensor based on surface plasmon resonance (SPR) onto a protein G layer by Self-assembly technique was developed for detection of Legionella pneumophila. The protein G layer by self-assembly technique was fabricated on a gold (Au) surface by adsorbing the 11-mercaptoundecanoic acid (MUA) and an activation process for the chemical binding of the free amino (-NH$_2$) of protein G and 11-(MUA) using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDAC) in series. The formation of the protein G layer by self-assembly technique on the Au Substrate and the binding of the antibody and antigen in series were confirmed by SPR spectroscopy. The Surface topographies of the fabricated thin films on an Au substrate were also analyzed by using an atomic force microscope (AFM). Consequently, an immunosensor for the detection of L. pneumophila using SPR was developed with a detection limit of up to 10$^2$CFU per mL.

Three-Dimensional Self-Assembly of Gold Nanoparticles Using a Virus Scaffold

  • Kang, Aeyeon;Lee, Young-Mi;Kang, Hyo Jin;Chung, Sang Jeon;Yun, Wan Soo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.651-651
    • /
    • 2013
  • Templated strategy is a very powerful tool for creating multi-dimensional self assembly of nanomaterials. Since viral protein cages have a uniform size with a well-defined structure, they can serve as an excellent template for the formation of a three-dimensional self-assembly of synthetic nanoparticles. In this study, we have examined the feasibility of the 3D self-assembly of gold nanoparticles of various sizes using a brome mosaic virus (BMV) capsid with cysteine groups expressed on its surface as a scaffold for the assembly. It was found that the three-dimensional clusters of gold nanoparticles with a designed structure were attainable by this approach, which was verified by transmission electron microscope (TEM) and dynamic light scattering (DLS) analysis.

  • PDF

Mechanism of amyloidogenesis: nucleation-dependent fibrillation versus double-concerted fibrillation

  • Bhak, Ghi-Bom;Choe, Young-Jun;Paik, Seung-R.
    • BMB Reports
    • /
    • v.42 no.9
    • /
    • pp.541-551
    • /
    • 2009
  • Amyloidogenesis defines a condition in which a soluble and innocuous protein turns to insoluble protein aggregates known as amyloid fibrils. This protein suprastructure derived via chemically specific molecular self-assembly process has been commonly observed in various neurodegenerative disorders such as Alzheimer's, Parkinson's, and Prion diseases. Although the major culprit for the cellular degeneration in the diseases remains unsettled, amyloidogenesis is considered to be etiologically involved. Recent recognition of fibrillar polymorphism observed mostly from in vitro amyloidogeneses may indicate that multiple mechanisms for the amyloid fibril formation would be operated. Nucleation-dependent fibrillation is the prevalent model for assessing the self-assembly process. Following thermodynamically unfavorable seed formation, monomeric polypeptides bind to the seeds by exerting structural adjustments to the template, which leads to accelerated amyloid fibril formation. In this review, we propose another in vitro model of amyloidogenesis named double-concerted fibrillation. Here, two consecutive assembly processes of monomers and subsequent oligomeric species are responsible for the amyloid fibril formation of $\alpha$-synuclein, a pathological component of Parkinson's disease, following structural rearrangement within the oligomers which then act as a growing unit for the fibrillation.

Phage Assembly Using APTES-Conjugation of Major Coat p8 Protein for Possible Scaffolds

  • Kim, Young Jun;Korkmaz, Nuriye;Nam, Chang Hoon
    • Interdisciplinary Bio Central
    • /
    • v.4 no.3
    • /
    • pp.9.1-9.7
    • /
    • 2012
  • Filamentous phages have been in the limelight as a new type of nanomaterial. In this study, genetically and chemically modified fd phage was used to generate a biomimetic phage self-assembly product. Positively charged fd phage (p8-SSG) was engineered by conjugating 3-aminopropyltriethoxysilane (APTES) to hydroxyl groups of two serine amino acid residues introduced at the N-terminus of major coat protein, p8. In particular, formation of a phage network was controlled by changing mixed ratios between wild type fd phage and APTES conjugated fd-SSG phage. Assembled phages showed unique bundle and network like structures. The bacteriophage based self-assembly approach illustrated in this study might contribute to the design of three dimensional microporous structures. In this work, we demonstrated that the positively charged APTES conjugated fd-SSG phages can assemble into microstructures when they are exposed to negatively charged wild-type fd phages through electrostatic interaction. In summary, since we can control the phage self-assembly process in order to obtain bundle or network like structures and since they can be functionalized by means of chemical or genetic modifications, bacteriophages are good candidates for use as bio-compatible scaffolds. Such new type of phage-based artificial 3D architectures can be applied in tuning of cellular structures and functions for tissue engineering studies.

End-to-end Structural Restriction of α-Synuclein and Its Influence on Amyloid Fibril Formation

  • Hong, Chul-Suk;Park, Jae Hyung;Choe, Young-Jun;Paik, Seung R.
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.12
    • /
    • pp.3542-3546
    • /
    • 2014
  • Relationship between molecular freedom of amyloidogenic protein and its self-assembly into amyloid fibrils has been evaluated with ${\alpha}$-synuclein, an intrinsically unfolded protein related to Parkinson's disease, by restricting its structural plasticity through an end-to-end disulfide bond formation between two newly introduced cysteine residues on the N- and C-termini. Although the resulting circular form of ${\alpha}$-synuclein exhibited an impaired fibrillation propensity, the restriction did not completely block the protein's interactive core since co-incubation with wild-type ${\alpha}$-synuclein dramatically facilitated the fibrillation by producing distinctive forms of amyloid fibrils. The suppressed fibrillation propensity was instantly restored as the structural restriction was unleashed with ${\beta}$-mercaptoethanol. Conformational flexibility of the accreting amyloidogenic protein to pre-existing seeds has been demonstrated to be critical for fibrillar extension process by exerting structural adjustment to a complementary structure for the assembly.

Unprecedented Molecular Architectures by the Controlled Self-Assembly of ${\beta}$-Peptide Foldamer

  • Kwon, Sun-Bum;Lee, Hee-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.204-204
    • /
    • 2011
  • During past decades, several types of peptide-based scaffolds, ranging from simple aromatic dipeptide to small protein fragments, have been studied to understand the underlying mechanism and mimic to create artificial nano/microstructures. However, a limited number of design principles have still been reported in peptidic scaffolds allowing well-defined self-assembled structure formation, presumably due to the intrinsic large conformational flexibility of natural peptides. In this presentation, we report the first example of highly homogeneous, well-defined and finite architectures by the ${\beta}$-peptide self-assembly.

  • PDF

Development of Protein Chip by Random Fluidic Self-Assembly Interaction (무작위 액중 상호 작용에 의한 단백질칩의 개발)

  • Choi, Yong-Sung;Kwon, Young-Soo;Park, Dae-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.303-305
    • /
    • 2003
  • In this paper, we have been proposed a new method of multichannel biosensor using random fluidic self-assembly. A metal particle and an array was fabricated. Biomaterials were immobilized on the metal particle. The array and the particles were mixed in a buffer solution, and were arranged by self-assembly. A quarter of total Ni dots were covered by the particles. The binding direction of the particles was controllable, and condition of particles was almost with Au surface on top. The particles were successfully arranged on the array. The biomaterial activities were detected by chemiluminescence.

  • PDF

Production of Nucleocapsid Protein of Newcastle Disease Virus in Escherichia coli and its Assembly into Ring-and Nucleocapsid-like Particles

  • Kho, Chiew-Ling;Tan, Wen-Siang;Khatijah Yusoff
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.293-299
    • /
    • 2001
  • The nucleocapsid(NP) protein of Newcastle disease virus (NDV) and its derivative (NP$\sub$cfus)containing the myc region and six histidine residues fused to its C-terminus were pcpressed aboundantly in Escherichia coli. The proteins were purified by sucrose gradient centrifugation. Both the NP and NP$\sub$cfus/ proteins self-assem- bled into ring-like particles stacked together to from nucleocapsid-like structure which are heterogeneous in length with a diameter of 20${\pm}$2 nm and central holow of 5${\pm}$1 nm. Only a very small amount of the monomers in the particles was linked by inter-molecular disulfide bonds. Fusion of the C-terminal end to 29 amino acids inclusive of the myc epitope and His tag did not impair ring assembly buy inhibited the formation of the long herringbone structures. Immunogold lableing of the particles with the anti-myc antibody showed that the C-terminus of the NP$\sub$cfus/ protein is exposed on the surface of these ring-like particles.

  • PDF

Assembly and electrical property of GFP/Cytochrome b562 Fusion Protein ontothe Au Substrate

  • Jeong, Seong-Cheol;Choe, Jeong-U;Lee, Won-Hong;Nagamune, T.
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.630-633
    • /
    • 2003
  • Transfer of an electron from one site to another in a molecular or between molecules and/or electrodes is one of the most fundamental and ubiquitous processes in chemistry, biology and physics. In this study fusion proteins composed by green fluorescent protein(GFP) and cytochrome b562 were used in fabricating molecular array as an electron sensitizer and electron acceptor, Protein formation onto the substrate was performed by the self-assembly technique. The fusion protein film were analyzed using scanning probe microscope(SPM), Surface Plasmon Resornance(SPR) and hybrid STM/I-V. The results suggest that the proposed molecular photodiode can be used as a basic unit of the memory device.

  • PDF

Assembly of Biomimetic Peptoid Polymers

  • Nam, Gi-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.10.2-10.2
    • /
    • 2011
  • The design and synthesis of protein-like polymers is a fundamental challenge in materials science. A biomimetic approach is to explore the impact of monomer sequence on non-natural polymer structure and function. We present the aqueous self-assembly of two peptoid polymers into extremely thin two-dimensional (2D) crystalline sheets directed by periodic amphiphilicity, electrostatic recognition and aromatic interactions. Peptoids are sequence-specific, oligo-N-substituted glycine polymers designed to mimic the structure and functionality of proteins. Mixing a 1:1 ratio of two oppositely charged peptoid 36 mers of a specific sequence in aqueous solution results in the formation of giant, free-floating sheets with only 2.7 nm thickness. Direct visualization of aligned individual peptoid chains in the sheet structure was achieved using aberration-corrected transmission electron microscopy. Specific binding of a protein to ligand-functionalized sheets was also demonstrated. The synthetic flexibility and biocompatibility of peptoids provide a flexible and robust platform for integrating functionality into defined 2D nanostructures. In the later part of my talk, we describe the use of metal ions to construct two-dimensional hybrid films that have the ability to self-heal. Incubation of biomimetic peptoid polymers with specific divalent metal ions results in the spontaneous formation of uniform multilayers at the air-water interface. We anticipate that ease of synthesis and transfer of these two-dimensional materials may have many potential applications in catalysis, gas storage and sensing, optics, nanomaterial synthesis, and environmentally responsive scaffolds.

  • PDF