• Title/Summary/Keyword: Protein synthesis

Search Result 1,815, Processing Time 0.026 seconds

MUSCLE PROTEIN SYNTHESIS IN VITRO IN CHICKS FED A LOW-PROTEIN DIET

  • Kita, K.;Kuzuya, Y.;Matsunami, S.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.2
    • /
    • pp.171-174
    • /
    • 1996
  • Muscle protein synthesis in vitro was measured in chicks fed low-protein(10% CP) and control(20% CP) diets. Right leg muscles (M. gastrocnemius) were mounted on a support made of stainless steel to stretch in constant tension, whereas left leg muscles were unmounted. Both leg muscles were incubated in Dulbecco's modified Eagle's medium including L-[$4-^3H$] phenylalanine for 60 min to measure in vitro protein synthesis. There was no significant difference in fractional synthesis rate(FSR) of muscle protein between both dietary protein levels, whereas FSR with stretch in constant tension was significantly higher than that without constant tension due to an increase in the absolute synthesis rate(ASR) per unit RNA(the efficiency of RNA to synthesize protein). The ASR of muscle protein in chicks fed the control diet was significantly higher than that in the low-protein diet group.

Chicken Insulin-Like Growth Factor-I Stimulates Protein Synthesis of Chicken Embryo Myoblasts Cultured in Serum-Free Medium

  • Kita, K.;Okumura, J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.17-20
    • /
    • 2001
  • The effect of chicken IGF-I on protein synthesis of chicken embryo myoblasts cultured in serum-free medium was examined. When myoblasts were expanded to approximate 20-30% of well, the medium was changed to the serum-free medium including 0, 2, 20, 200 or 2000 ng/ml of recombinant chicken IGF-I. The culture medium including 10% fetal calf serum (FCS) was used as positive control. After 1 day of incubation, protein synthesis was measured by the incorporation of [$^3H$]-L-leucine. Thereafter cells were continued to incubate for further 18 hours, and the radioactivity in the protein was measured as an index of protein synthesis. The values for protein synthesis cultured in the serum-free medium without chicken IGF-I or with 2000 ng/ml of chicken IGF-I were the lowest. Protein synthesis was elevated with increasing chicken IGF-I concentration from 0 to 20 ng/ml. The values for protein synthesis in the 20 ng/ml and 200 ng/ml IGF-I groups were about half of that of the FCS group. The present study revealed that the potency of chicken IGF-I at the levels of 20 to 200 ng/ml to stimulate myoblast protein synthesis was about half of that of 10% FCS.

Effect of Orally Administered Branched-chain Amino Acids on Protein Synthesis and Degradation in Rat Skeletal Muscle

  • Yoshizawa, Fumiaki;Nagasawa, Takashi;Sugahara, Kunio
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.1
    • /
    • pp.133-140
    • /
    • 2005
  • Although amino acids are substrates for the synthesis of proteins and nitrogen-containing compounds, it has become more and more clear over the years that these nutrients are also extremely important as regulators of body protein turnover. The branched-chain amino acids (BCAAs) together or simply leucine alone stimulate protein synthesis and inhibit protein breakdown in skeletal muscle. However, it was only recently that the mechanism(s) involved in the regulation of protein turnover by BCAAs has begun to be defined. The acceleration of protein synthesis by these amino acids seems to occur at the level of peptide chain initiation. Oral administration of leucine to food-deprived rats enhances muscle protein synthesis, in part, through activation of the mRNA binding step of translation initiation. Despite our knowledge of the induction of protein synthesis by BCAAs, there are few studies on the suppression of protein degradation. The recent findings that oral administration of leucine rapidly reduced $N^{\tau}$-methylhistidine (3-methylhistidine; MeHis) release from isolated muscle, an index of myofibrillar protein degradation, indicate that leucine suppresses myofiblilar protein degradation. The details of the molecular mechanism by which leucine inhibits proteolysis is just beginning to be elucidated. The purpose of this report was to review the current understanding of how BCAAs act as regulators of protein turnover.

Regulation of skeletal muscle protein synthesis by amino acid and resistance exercise

  • Nakai, Naoya
    • Korean Journal of Exercise Nutrition
    • /
    • v.15 no.4
    • /
    • pp.153-161
    • /
    • 2011
  • The maintenance of skeletal muscle mass is very important for the prevention of life style-related diseases and the improvement of quality of life. It is well-known that resistance exercise and nutrition (especially amino acids) are the most effective interventions for maintaining skeletal muscle mass. It has been reported that many molecules are involved in the regulation of protein synthesis in response to resistance exercise and nutrition. Understanding the molecular mechanisms regulating muscle protein synthesis is crucial for the development of appropriate interventions. The role of intracellular signaling pathways through the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase in the regulation of muscle protein synthesis, has been extensively investigated for these years. Control of protein synthesis by mTOR is mediated through phosphorylation of downstream targets that modulate translation initiation and elongation step. In contrast, upstream mediators regulating mTOR and protein synthesis in response to resistance exercise and amino acid still needed to be determined. In this brief review, we discuss the current progress of intracellular mechanisms for exercise- and amino acid-induced activation of mTOR pathways and protein synthesis in skeletal muscle.

Zeolite-Mediated Cation Exchange Enhances the Stability of mRNA during Cell-Free Protein Synthesis

  • Kim, You-Eil;Kim, Dong-Myung;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.258-261
    • /
    • 2006
  • The addition of zeolite particles enhances the stability of mRNA molecules in a cell-free protein synthesis system. When $20{\mu}g/{\mu}L$ of zeolite (Y5.4) is added to a reaction mixture of cell-free protein synthesis, a substantial increase in protein synthesis is observed. The stabilizing effect of zeolite is most dearly observed in an in vitro translation reaction directed by purified mRNA, as opposed to a coupled transcription and translation reaction. Upon the addition of zeolite in the in vitro translation reaction, the life span of the mRNA molecules is substantially extended, leading to an 80% increase in protein synthesis. The effect of zeolite upon the mRNA stability appears be strongly related to the cation exchange (potassium to sodium) reaction. Our results demonstrate the possibility of modifying this biological process using heterogeneous, non-biological substances in a cell-free protein synthesis system.

EFFECT OF TRYPSIN-DIGESTED BOVINE GROWTH HORMONE ON WHOLE-BODY PROTEIN SYNTHESIS IN VITRO IN CHICKEN EMBRYOS

  • Kita, K.;Hatano, S.;Okumura, J.;Muramatsu, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.319-323
    • /
    • 1993
  • The effect of bovine growth hormone digested with trypsin on whole-body protein synthesis in vitro of chicken embryos was investigated by using a whole-embryo culture system. Bovine growth hormone at 5.3 and 530 ng/ml was digested partially and completely with trypsin for 4 min and 18 h, respectively. After culturing chicken embryos with a synthetic medium containing $L-[4-^3H]$ pheylalanine, whole-embryo protein synthesis was determined from the ratio of specific radioactivities of free and protein-bound pheylalanine. Whole-embryo protein synthesis of the control group cultured with no bovine growth hormone was $49.5{\pm}2.2%/d$. There was no significant interaction between digestion time and the concentration of trypsin-digested bovine growth hormone. Tryptic digestion of bovine growth hormone increased fractional synthesis rates of whole-body protein compared to the 0-min groups, and there was no significant difference between the 4-min and 18-h groups. The higher concentration (530 ng/ml) of trypsin-digested bovine growth hormone was more effective in enhancing whole-embryo protein synthesis than the lower concentration (5.3 ng/ml).

Changes in Protein Synthesis Induced by Chilling in Tomato Chloroplasts

  • Kim, Won-Il;Jung, Goo-Bok;Kim, Min-Kyeong;Park, Kwang-Lai;Yun, Sun-Gang
    • Korean Journal of Environmental Agriculture
    • /
    • v.20 no.5
    • /
    • pp.310-316
    • /
    • 2001
  • To find out the effect of low temperature on the regulation of tomato chloroplast genes, the optimization of the system in chloroplast protein synthesis and the identification of the changes in chloroplast protein synthesis induced by chilling were studied. Incorporation reaction occurred rapidly at the first 30 minutes and was constantly maintained after 60 minutes. A broad optimal temperature on protein synthesis was found around 20 to $30^{\circ}C$. No difference was shown in the chloroplast protein synthesis under high light intensity (1600 ${\mu}E/m^2/s$) as well as under low light intensity (400 ${\mu}E/m^2/s$) even darkness. $K^+$, $Mg^{++}$ and ATP at an optimal concentration act as an activator, while DTT, chloramphenicol, cycloheximide, $Ca^{++}$ and inorganic phosphate act as an inhibitor in the chloroplast protein synthesis. Synthesis of 15, 55 and 60 kd chloroplast encoded stromal proteins and 18, 24, 33 and 55 kd chloroplast encoded thylakoid membrane proteins were reduced by chilling, while 17 kd chloroplast encoded stromal protein and 16 kd chloroplast encoded thylakoid membrane protein was induced by chilling. It was expected that the 55 kd stromal protein would be the large subunit of rubisco and the 33 kd thylakoid membrane protein would be the D1 protein which was drastically reduced by chilling.

  • PDF

Effects of Taurine on Lipid Metabolism and Protein Synthesis in Poultry and Mice

  • Shim, K.S.;Jung, H.J.;Na, C.S.;Yoon, C.;Park, Garng H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.6
    • /
    • pp.865-870
    • /
    • 2009
  • In this study, we have attempted to understand the effects of taurine on serum and liver concentrations of cholesterol and triglycerides in broiler chickens and mice in the post-absorptive state, and on in vitro protein synthesis in the livers of broiler chickens and laying hens, as well as the effects of taurine on in vivo protein synthesis in the liver of mice. The experimental animals were subjected to 24 h of starvation in order to perpetuate a post-absorptive state. Serum concentrations of high density lipoprotein cholesterol and triglycerides were significantly (p<0.05) higher in the taurine groups than in the controls in both the broilers and the mice. However, taurine resulted in a significant (p<0.05) reduction in liver concentrations of total cholesterol and triglycerides, relative to what was seen in the control groups of both animals. Taurine stimulated the in vitro synthesis of 57-kDa, 40-kDa and 23-kDa proteins in the liver of broilers, but inhibited the in vitro synthesis of 54-kDa, 37-kDa and 24-kDa proteins. Taurine in the liver of laying hens exerted effects on in vitro protein synthesis, with the exception of the 26-kDa protein which was not detected in broiler liver, but was inhibited by taurine in the liver of laying hens. Unlike the findings regarding in vitro protein synthesis in the liver of broilers or laying hens, taurine appeared to stimulate the synthesis of only two proteins, a 47-kDa and a 40-kDa protein, in the liver of mice. Overall, theses findings indicate that taurine treatment results in a reduction in cholesterol and triglyceride concentrations, and also affects protein synthesis in the livers of broilers, laying hens, and mice.

Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein

  • Kim, Kwang-sun;Ryoo, Hye-jin;Lee, June-Hyung;Kim, Mee-hyun;Kim, Tae-yeon;Kim, Yool;Han, Kook;Lee, Seol-Hoon;Lee, Young-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.699-704
    • /
    • 2006
  • Escherichia coli RNase P is a ribonucleoprotein composed of M1 RNA and C5 protein. Previously, analysis of RNA aptamers selected for C5 protein from a synthetic RNA library showed that C5 protein could bind various RNA molecules as an RNA binding protein. In this study, we searched cellular RNA motifs that could be recognized by C5 protein by a genomic SELEX approach. We found various C5 protein-binding RNA motifs derived from E. coli genomic sequences. Our results suggest that C5 protein interacts with various cellular RNA species in addition to M1 RNA.

Evidence for the Ras-Independent Signaling Pathway Regulating Insulin-Induced DNA Synthesis

  • Jhun, Byung-H.
    • BMB Reports
    • /
    • v.32 no.2
    • /
    • pp.196-202
    • /
    • 1999
  • The existence of the Ras-independent signal transduction pathway of insulin leading to DNA synthesis was investigated in Rat-1 fibroblasts overexpressing human insulin receptor (HIRc-B) using the single-cell microinjection technique. Microinjection of a dominant-negative mutant $Ras^{N17}$ protein into quiescent HIRc-B cells inhibited the DNA synthesis stimulated by insulin. Microinjection of oncogenic H-$Ras^{V12}$ protein ($H-Ras^{V12}$) (0.1 mg/ml) induced DNA synthesis by 35%, whereas that of control-injected IgG was induced by 20%. When the marginal amount of oncogenic H-$Ras^{V12}$ protein was coinjected with a dominant-negative mutant of the H-Ras protein ($Ras^{N17}$), DNA synthesis was 35% and 74% in the absence and presence of insulin, respectively. This full recovery of DNA synthesis by insulin suggests the existence of the Ras-independent pathway. The same recovery was observed in the cells coinjected with either H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus SH2 domain of the p85 subunit of PI3-kinase ($p85^{SH2-N}$) or H-$Ras^{V12}$ plus H-$Ras^{N17}$ plus interfering anti-Shc antibody. When co-injected with a dominant-negative H-$Ras^{N17}$, the DNA synthesis induced by the Ras-independent pathway was blocked. These results indicate that the Ras-independent pathway of insulin leading to DNA synthesis exists, bypassing the p85 of PI3-kinase and Shc protein, and requires Rac1 protein.

  • PDF