• Title/Summary/Keyword: Protein tyrosine phosphatase %28PTP%29

Search Result 2, Processing Time 0.018 seconds

New dammarane-type triterpenoids from the leaves of Panax notoginseng and their protein tyrosine phosphatase 1B inhibitory activity

  • Li, Dawei;Cao, Jiaqing;Bi, Xiuli;Xia, Xichun;Li, Wei;Zhao, Yuqing
    • Journal of Ginseng Research
    • /
    • v.38 no.1
    • /
    • pp.28-33
    • /
    • 2014
  • Background: Panax notoginseng has been used as a general tonic agent to invigorate human body for millennia in China and continued to be used until present. Methods: Some chromatographic methods were performed to isolate pure triterpenoids, and their structures were determined by nuclear magnetic resonance (NMR) experiments. Anti-diabetes activities of isolated compounds were evaluated through their inhibitory activity of protein tyrosine phosphatase 1B (PTP1B) enzyme. Results and Conclusion: Three new dammarane-type triterpenoids, notoginsenoside-LX (1), notoginsenoside-LY (2), and notoginsenoside-FZ (3) together with eighteen known compounds were isolated from the Panax notoginseng leaves. The structure-activity relationship of the compounds with dammaranetype triterpenoids and their PTP1B inhibitory activity were also reported. Results showed that compounds 2, 15, 20, and 21 can significantly inhibit the enzyme activity of PTP1B in a dose-dependent manner, with inhibitory concentration 50 ($IC_{50}$) values of $29.08{\mu}M$, $21.27{\mu}M$, $28.12{\mu}M$, and $26.59{\mu}M$, respectively. The results suggested that Panax notoginseng leaves might have potential as a new therapeutic agent for the treatment of diabetes.

Inhibitory Activity of Aralia elata Leaves on Protein Tyrosine Phosphatase 1B and α-Glucosidase (참두릅 잎의 Protein Tyrosine Phosphatase 1B와 α-Glucosidase 저해 활성)

  • Cho, Yoon Sook;Seong, Su Hui;Bhakta, Himanshu Kumar;Jung, Hee Jin;Moon, Kyung Ho;Choi, Jae Sue
    • Korean Journal of Pharmacognosy
    • /
    • v.47 no.1
    • /
    • pp.29-37
    • /
    • 2016
  • Anti-diabetic potential of the leaves of A. elata through the inhibitory activity on PTP1B and ${\alpha}$-glucosidase has not been reported. In this study, the EtOAc fraction of methanolic extract from the leaves of A. elata showed potent inhibitory activity against the PTP1B and ${\alpha}$-glucosidase with $IC_{50}$ value of $96.29{\pm}0.3$ and $264.71{\pm}14.87{\mu}g/mL$, respectively. Three known triterpenoids, oleanolic acid, oleanolic acid-28-O-${\beta}$-D-glucopyranoside and oleanolic acid-3-O-${\beta}$-D-glucopyranoside were isolated from the most active EtOAc fraction. We determined the chemical structure of these triterpenoids through comparisons of published nuclear magnetic resonance (NMR) spectroscopic data. Furthermore, we screened these triterpenoids for their ability to inhibit PTP1B and ${\alpha}$-glucosidase over a range of concentrations ($12.5-50{\mu}M$). All three terpenoids significantly inhibited PTP1B in a concentration dependent manner and oleanolic acid effectively inhibited ${\alpha}$-glucosidase. In addition, these compounds revealed potent inhibitory activity with negative binding energies toward PTP1B, showing high affinity and tight binding capacity in the molecular docking studies. Therefore, the results of the present study clearly demonstrate that A. elata leaves and its triterpenoid constituents might be beneficial in the prevention or treatment of diabetic disease.