• Title/Summary/Keyword: Proth identity

Search Result 1, Processing Time 0.013 seconds

ON A FUNCTIONAL EQUATION ARISING FROM PROTH IDENTITY

  • Chung, Jaeyoung;Sahoo, Prasanna K.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.131-138
    • /
    • 2016
  • We determine the general solutions $f:\mathbb{R}^2{\rightarrow}\mathbb{R}$ of the functional equation f(ux-vy, uy+v(x+y)) = f(x, y)f(u, v) for all x, y, u, $v{\in}\mathbb{R}$. We also investigate both bounded and unbounded solutions of the functional inequality ${\mid}f(ux-vy,uy+v(x+y))-f(x,y)f(u,v){\mid}{\leq}{\phi}(u,v)$ for all x, y, u, $v{\in}\mathbb{R}$, where ${\ph}:\mathbb{R}^2{\rightarrow}\mathbb{R}_+$ is a given function.