• Title/Summary/Keyword: Proton magnetic resonance spectroscopy

Search Result 111, Processing Time 0.025 seconds

Use of Nuclear Magnetic Resonance Spectroscopy in Analysis of Fennel Essential Oil

  • AbouZid, Sameh
    • Natural Product Sciences
    • /
    • v.22 no.1
    • /
    • pp.30-34
    • /
    • 2016
  • A simple and rapid method based on proton nuclear magnetic resonance spectroscopy was developed for determination of trans-anethole content in fennel essential oil. Spectra of pure trans-anethole, of the pure essential oil of fennel, and of the pure oil of fennel with thymol internal standard were recorded. The signal of $H-1^/$ was used for quantification of trans-anethole. This proton signal is well separated in the proton magnetic resonance spectrum of the compound. No reference compound is needed and cheap internal standard was used. The results obtained from spectroscopic analysis were compared with those obtained by gas chromatography. Additionally, the developed method was used for determination of the type of vegetable oil used as a carrier in commercial products, which cannot be quantified as such by gas chromatography. This study demonstrates the application of proton nuclear magnetic resonance spectroscopy as a quality control method for estimation of essential oil components.

Arterial Spin Labelling Perfusion, Proton MR Spectroscopy and Susceptibility-Weighted MR Findings of Acute Necrotizing Encephalopathy: a Case Report

  • Kwon, Hwanwoong;Choi, Dae Seob;Jang, Jungho
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.157-161
    • /
    • 2019
  • In this study, we report arterial spin labelling perfusion, proton MR spectroscopy and susceptibility-weighted MR findings of acute necrotizing encephalopathy in a child with rotavirus infection.

The Study of Lipid Proton Composition Change in a Rat Model of High Fat Diet Induced Fatty Liver by Magnetic Resonance Spectroscopy Analysis (고지방식이 유도성 지방간 쥐 모델에서 간의 자기공명분광 분석을 이용한 지질 양성자 조성 변화 연구)

  • Kim, Sang-Hyeok;Yu, Seung-Man
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.315-325
    • /
    • 2021
  • The purpose of this study is to investigate the changes in lipid proton (LP) composition according to the induced obese fatty liver and to use it as basic data for treatment and diagnosis of fatty liver in the future. The phantom study was conducted to identify differences between STEAM and PRESS Pulse sequences in LP concentration. A high-fat diet (60%) was administered to eight Sprague-Dawley rats to induce obesity and fatty liver disease. Baseline magnetic resonance imaging /spectroscopy data were obtained prior to the introduction of high-fat diet, and data acquisition experiments were performed after eight weeks using procedures identical to those used for baseline studies. The six lipid proton metabolites were calculated using LCModel software. The correlation between the fat percentage and each LP, revealed that the methylene protons at 1.3 ppm showed the highest positive correlation. The α-methylene protons to carboxyl and diallylic protons showed negative correlation with fat percentage. The methylene proton showed the highest increase in the LP; however, it constituted only 71.86% of the total LP concentration. The methylene proton plays a leading role in fat accumulation in liver parenchyma.

Evaluation of Neuronal Dysfunction in Schizophrenia before and after Neuroleptic Treatment by ??H MRS

  • C, Bo-Young;Paik, In-Ho;Lee, Chang-Uk;Lee, Hyoung-Koo;Suh, Tae-Suk
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.5 no.1
    • /
    • pp.56-65
    • /
    • 2001
  • Localized in vivo proton magnetic resonance spectroscopy (MRS) was performed to evaluate metabolic alterations in the right and left frontal lobe before and after neuroleptic treatment of schizophrenic patients (n=24) and a group of healthy normal subjects (n=20). Proton metabolic ratios obtained from the 8㎤ yokels in the right and left frontal lobe were compared with the clinical assessment of PANSS for each subject. There was no significant difference in the metabolic ratios between the right and the left frontal lobes in either the schizophrenic group or the control group, indicating no laterality. Compared with those of the normal control group, NAA/Cr and (GABA+Glu)/Cr ratios of the schizophrenic patients showed significantly lower (p=0.023) and higher (p=0.005) value, respectively. The (GABA+Glu)/Cr ratio of the schizophrenic patients was generally decreased after neuroleptic treatment, while the NAA/Cr ratio was not changed. Significant correlation between the (GABA+Glu)/Cr ratio and the clinical symptom scores assessed by PANSS was established. The present study supports the “hypofrontality” hypothesis of schizophrenia on the basis of the altered metabolic ratios before and after neuroleptic treatment.

  • PDF

Characteristic findings of proton magnetic resonance spectroscopy of primary central nervous system Iymphoma

  • Kim, Seung-Hun;Lee, Hui-Joong;Kim, Yong-Sun
    • Proceedings of the KSMRM Conference
    • /
    • 2003.10a
    • /
    • pp.25-25
    • /
    • 2003
  • Purpose: In order to characterise primary central nervous system Iymphomas (PCNSL) and to evaluate if 1H spectroscopy improves the preoperative differential diagnosis of other diseases. Method: We reviewed 11 MR imaging and 7 MR spectroscopy of 9 patient with Iymphoma confirmed by stereotatic biopsy.

  • PDF

Comparison of in Vivo, in Vitro 3T MR Spectroscopy and Proton NMR Spectroscopy for the Fluid from Cystic Tumor: Preliminary Study (낭성 종양의 체액에 대한 생체내, 생체외 3T 양성자 자기공명분 광법과 양성자 핵자기공명기법의 비교: Preliminary Study)

  • Lee, Hui-Joong;Kim, Jong-Yeol;Chang, Yong-Min
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.107-114
    • /
    • 2008
  • Purpose : The aim of this study is to determine possibility of application of in vivo proton ($^1H$) magnetic resonance spectroscopy (MRS) in distinguishing cystic mass arising around pancreas by comparison of in vivo MRS, in vitro MRS using 3T MR machine, based on nuclear magnetic resonance (NMR). Materials and Methods : We obtained spectra of in vivo MRS, in vitro MRS and NMR from abdominal mass arising around pancreas (mucinous cystic neoplasm=5, intraductal papillary mucin producing tumor=5, pseudocyst=1, and lymphangioma=1). We estimated existence of peak of in vivo MRS, and in vitro MRS concordant to that of NMR. We also evaluated differential peak for predicting specific disease. Results : Correlation of presence of peak with NMR showed showed sensitivity of 29.6%, specificity of 82.6% and accuracy of 67.7% on in vivo MRS (p = 0.096, McNemar test), sensitivity of 57.1% and specificity of 92.6% and accuracy of 82.3% on in vitro MRS (p = 0.362, McNemar test). The spectra of NMR for IPMT showed more frequent peaks at 3.5-4.0 ppm (p=0.026). Conclusion : Although chemical analysis, using NMR could be regarded as possible tool to differentiate cystic masses, in vivo and in vitro MRS need further technical evolution for clinical application.

  • PDF

Application of CRAMPS for a Phase Transition in H+-ion irradiated TlH2PO4

  • Kim, Se-Hun;Han, J.H.;Lee, Cheol-Eui;Lee, Kwang-Sei;Kim, Chang-Sam;Dalal, N.S.;Han, Doug-Young
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.134-143
    • /
    • 2010
  • We studied the hydrogen-bonded $TlH_2PO_4$ (TDP) ferroelectrics treated with the proton-beam bombardment. The TDP material was irradiated with 1-MeV proton beam at a dose of $10^{15}/cm^2$. In order to analyze the hydrogen environment in TDP, we carried out the $^1H$ high resolution nuclear magnetic resonance (NMR) - i.e., Combined Rotation And Multiple Pulse Spectroscopy (CRAMPS) measurement. The isotropic chemical shift of hydrogen indicates its displacive property is related to the $PO_4$ lattice deformation which occurs throughout the antiferroelectric-, the ferroelastic- and the paraelastic-phase transitions. The temperature dependence of $\sigma_{iso}$ reveals the electronic charge redistribution is induced by the proton-beam irradiation and the elastic property.