• Title/Summary/Keyword: Pseudo capacitors

Search Result 4, Processing Time 0.021 seconds

Investigation of a Pseudo Capacitor with Polyacrylonitrile based Gel Polymer Electrolyte

  • Harankahawa, Neminda;Weerasinghe, Sandaranghe;Vidanapathirana, Kamal;Perera, Kumudu
    • Journal of Electrochemical Science and Technology
    • /
    • v.8 no.2
    • /
    • pp.107-114
    • /
    • 2017
  • Pseudo capacitors belong to one group of super capacitors which are consisted with non carbon based electrodes. As such, conducting polymers and metal oxide materials have been employed for pseudo capacitors. Conducting polymer based pseudo capacitors have received a great attention due to their interesting features such as flexibility, low cost and ease of synthesis. Much work has been done using liquid electrolytes for those pseudo capacitors but has undergone various drawbacks. It has now been realized the use of solid polymer electrolytes as an alternative. Among them gel polymer electrolytes (GPEs) are in a key place due to their high ambient temperature conductivities as well as suitable mechanical properties. In this study, composition of a polyacrylonitrile (PAN) based GPE was optimized and it was employed as the electrolyte in a pseudo capacitor having polypyrrole (PPy) electrodes. GPE was prepared using ethylene carbonate (EC), propylene carbonate (PC), sodium thiocyanate (NaSCN) and PAN as starting materials. The maximum room temperature conductivity of the GPE was $1.92{\times}10^{-3}Scm^{-1}$ for the composition 202.5 PAN : 500 EC : 500 PC : 35 NaSCN (by weight). Performance of the pseudo capacitor was investigated using Cyclic Voltammetry technique, Electrochemical Impedance Spectroscopy (EIS) technique and Continuous Charge Discharge (GCD) test. The single electrode specific capacity (Cs) was found out to be 174.31 F/g using Cyclic Voltammetry technique at the scan rate of 10 mV/s and within the potential window -1.2 V to 1.2 V. The same value obtained using EIS was about 84 F/g. The discharge capacity ($C_d$) was 69.8 F/g. The capacity fade over 1000 cycles was rather a low value of 4%. The results proved the suitability of the pseudo capacitor for improving the performance further.

The Controller Design of a 2.4MJ Pulse Power Supply for a Electro-Thermal-Chemical Gun (전열화학포용 2.4MJ 펄스 파워 전원의 제어기 설계)

  • Kim, Jong-Soo;Jin, Y.S.;Lee, H.S.;Rim, Geun-Hie;Kim, J.S.
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.55 no.12
    • /
    • pp.511-517
    • /
    • 2006
  • The key issues in high power, high energy applications such as electromagnetic launchers include safety, reliability, flexibility, efficiency, compactness, and cost. To explore some of the issues, a control scheme for a large current wave-forming was designed, built and experimentally verified using a 2.4MJ pulse power system (PPS). The PPS was made up of eight capacitors bank unit, each containing six capacitors connected in parallel. Therefore there were 48 capacitors in total, with ratings of 22kV and 50kJ each. Each unit is charged through a charging switch that is operated by air pressure. For discharging each unit has a triggered vacuum switch (TVS) with ratings of 200kA and 250kV. Hence, flexibility of a large current wave-forming can be obtained by controlling the charging voltage and the discharging times. The whole control system includes a personal computer(PC), RS232 and RS485 pseudo converter, electric/optical signal converters and eight 80C196KC micro-controller based capacitor-bank module(CBM) controllers. Hence, the PC based controller can set the capacitor charging voltages and the TVS trigger timings of each CBM controller for the current wave-forming. It also monitors and records the system status data. We illustrated that our control scheme was able to generate the large current pulse flexibly and safely by experiments. The our control scheme minimize the use of optical cables without reducing EMI noise immunity and reliability, this is resulting in cost reduction. Also, the reliability was increased by isolating ground doubly, it reduced drastically the interference of the large voltage pulse induced by the large current pulse. This paper contains the complete control scheme and details of each subsystem unit.

Solvothermal Synthesis and Characterization of Nano-sized Barium Titanate Powder

  • Choi, Kyoon;Kwon, Soon-Gyu;Kim, Byung-Ik
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.124-125
    • /
    • 2006
  • Multilayer ceramic capacitor (MLCC) miniaturization has increased the demand for superfine $BaTiO_3$ powder due to its thin dielectric layer. Hydrothermally synthesized $BaTiO_3$ powder a pseudo-cubic phase resulting in poor dielectric properties due to size effect and hydroxyl ion inclusion in the $BaTiO_3$ lattice. We attempted a superfine (lower than 100 nm) highly tetragonal $BaTiO_3$ powder via a solvothermal method without precipitating agent. The lattice parameters and the relative amounts of tetragonal and cubic phases were determined using Rietveld refinement.

  • PDF

A Low Area and High Efficiency SMPS with a PWM Generator Based on a Pseudo Relaxation-Oscillating Technique (Pseudo Relaxation-Oscillating 기법의 PWM 발생기를 이용한 저면적, 고효율 SMPS)

  • Lim, Ji-Hoon;Wee, Jae-Kyung;Song, Inchae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.70-77
    • /
    • 2013
  • We suggest a low area and high efficiency switched-mode power supply (SMPS) with a pulse width modulation (PWM) generator based on a pseudo relaxation-oscillating technique. In the proposed circuit, the PWM duty ratio is determined by the voltage slope control of an internal capacitor according to amount of charging current in a PWM generator. Compared to conventional SMPSs, the proposed control method consists of a simple structure without the filter circuits needed for an analog-controlled SMPS or the digital compensator used by a digitally-controlled SMPS. The proposed circuit is able to operate at switching frequency of 1MHz~10MHz, as this frequency can be controlled from the selection of one of the internal capacitors in a PWM generator. The maximum current of the core circuit is 2.7 mA, and the total current of the entire circuit including output buffer driver is 15 mA at 10 MHz switching frequency. The proposed SMPS has a simulated maximum ripple voltage of 7mV. In this paper, to verify the operation of the proposed circuit, we performed simulation using Dongbu Hitek BCD $0.35{\mu}m$ technology and measured the proposed circuit.