• Title/Summary/Keyword: Pseudocapacitor

Search Result 19, Processing Time 0.022 seconds

Electrochemical Characteristics of Pseudocapacitor Using Aqueous Polymeric Gel Electrolyte (수용성 폴리머 겔 전헤액을 사용한 Pseudocapacitor의 전기화학적 특성)

  • Park, Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.2
    • /
    • pp.158-160
    • /
    • 2003
  • We have reported to make nanostructured cobalt oxide electrode that have large capacitance over than 400 F/g (specific capacitance) and good cycleability. But, it had serious demerits of low voltage range under 0.5 V and low power density. Therefore, we need to increase voltage range of cobalt oxide electrode. We report here on the electrochemical properties of sol-gel-derived nanoparticulate cobalt xerogel in 1M KOH solution and aqueous polymeric gel electrolyte. In solution electrolyte, cobalt oxide electrode had over 250 F/g capacitance consisted of EDLC and pseudocapacitance. In gel electrolyte, cobalt oxide electrode had around 100 F/g capacitance. This capacitance was only electric double layer capacitance of active surface area. In solution electrolyte, potassium ion as working ion reacted with both of layers easily. However, In gel electrolyte, reacted with only surface-active layer. Itis very hard to reach resistive layer. So, we have studied on pretreatment of electrode to contain working ions easily. We'll report more details.

The Effects of Hexamethylenetetramine Concentration on the Structural and Electrochemical Performances of Ni(OH)2 Powder for Pseudocapacitor Applications (헥사메틸렌테트라민 농도에 따른 수산화니켈 입자의 특성 분석 및 의사커패시터 응용)

  • Kim, Dong Yeon;Jeong, Young-Min;Baek, Seong-Ho;Son, Injoon
    • Journal of Powder Materials
    • /
    • v.26 no.3
    • /
    • pp.231-236
    • /
    • 2019
  • Ni hydroxides ($Ni(OH)_2$) are synthesized on Ni foam by varying the hexamethylenetetramine (HMT) concentration using an electrodeposition process for pseudocapacitor (PC) applications. In addition, the effects of HMT concentration on the $Ni(OH)_2$ structure and the electrochemical properties of the PCs are investigated. HMT is the source of amine-based $OH^-$ in the solution; thus, the growth rate and morphological structure of $Ni(OH)_2$ are influenced by HMT concentration. When $Ni(OH)_2$ is electrodeposited at a constant voltage mode of -0.85 V vs. Ag/AgCl, the cathodic current and the number of nucleations are significantly reduced with increasing concentration of HMT from 0 to 10 mM. Therefore, $Ni(OH)_2$ is sparsely formed on the Ni foam with increasing HMT concentration, showing a layered double-hydroxide structure. However, loosely packed $Ni(OH)_2$ grains that are spread on Ni foam maintain a much greater surface area for reaction and result in the effective utilization of the electrode material due to the steric hindrance effect. It is suggested that the $Ni(OH)_2$ electrodes with HMT concentration of 7.5 mM have the maximum specific capacitance (1023 F/g), which is attributed to the facile electrolyte penetration and fast proton exchange via optimized surface areas.

MnO2 Nanowires Electrodeposited in a Porous Network of Agarose Gel as a Pseudocapacitor Electrode

  • Jin, Sohyun;Ryu, Ilhwan;Lim, Geo;Yim, Sanggyu
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.406-410
    • /
    • 2020
  • Despite a simple preparation of manganese oxide (MnO2) nanowires by electrodeposition, the improvement in specific capacitance (Csp) and voltammetric response of the MnO2 nanowire-based electrodes has been quite limited. This is attributed to the poor electrical conductivity of MnO2 and its dense bulk morphology due to the aggregation of the nanowires. This study investigated the capacitive performance of MnO2 nanowires electrodeposited on agarose thin films. The good ionic conductivity and porous network of the agarose film provided favorable growth conditions for the MnO2 nanowires with suppressed aggregation. A maximum Csp value of 686 F/g measured at a scan rate of 10 mV/s was obtained, which was significantly larger than that of 314 F/g for the agarose-free MnO2 electrode at the same scan rate. The rate capability was also improved. The Csp measured at a high scan rate of 100 mV/s retained 74.0% of the value measured at 10 mV/s, superior to the retention of 71.1% for the agarose-free MnO2 electrode.

Surface observation of Ni(OH)2 nanosheets fabricated by electrodeposition method (전착법에 의해 제작된 Ni(OH)2 나노 시트의 표면 관찰 및 분석)

  • Kim, Dong Yeon;Son, Injoon;Choi, Mun-Hyun
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.3
    • /
    • pp.152-157
    • /
    • 2021
  • The pseudocapacitor has a high energy density characteristic because it accumulates charges through a paradic redox reaction. However, due to its strong insulation properties, metal hydroxides should be designed as structural systems optimized for charge transfer to support fast electron transport. Also, Nickel material is weak to heat and is easily deformed when used as a cathode material, so stability must be secured. In this study, nickel hydroxide was produced by electrodeposition to secure the stability of nickel. Electrodeposition is a synthetic method suitable for growing optimized nickel hydroxide because it allows fine control. Nickel hydroxide (Ni(OH)2) is a metal hydroxide used as a pseudocapacitor anode due to its high capacitance, electrical conductivity and resistance. Therefore, in order to determine how Ni(OH)2 nanosheets are formed and what are the optimization conditions, various measurement methods were used to focus on structural growth of nanosheets produced by electrodeposition.

WS2 Nanoparticles Embedded in Carbon Nanofibers for a Pseudocapacitor (의사 커패시터를 위한 WS2 나노입자가 내제된 탄소나노섬유)

  • Sung, Ki-Wook;Lee, Jung Soo;Lee, Tae-Kum;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.31 no.8
    • /
    • pp.458-464
    • /
    • 2021
  • Tungsten disulfide (WS2), a typical 2D layerd structure, has received much attention as a pseudocapacitive material because of its high theoretical specific capacity and excellent ion diffusion kinetics. However, WS2 has critical limits such as poor long-term cycling stability owing to its large volume expansion during cycling and low electrical conductivity. Therefore, to increase the high-rate performance and cycling stability for pseudocapacitors, well-dispersed WS2 nanoparticles embedded in carbon nanofibers (WS2-CNFs), including mesopores and S-doping, are prepared by hydrothermal synthesis and sulfurizaiton. These unique nanocomposite electrodes exhibit a high specific capacity (159.6 F g-1 at 10 mV s-1), excellent high-rate performance (81.3 F g-1 at 300 mV s-1), and long-term cycling stability (55.9 % after 1,000 cycles at 100 mV s-1). The increased specific capacity is attributed to well-dispersed WS2 nanoparticles embedded in CNFs that the enlarge active area; the increased high-rate performance is contributed by reduced ion diffusion pathway due to mesoporous CNFs and improved electrical conductivity due to S-doped CNFs; the long-term cycling stability is attributed to the CNFs matrix including WS2 nanoparticles, which effectively prevent large volume expansion.