• Title/Summary/Keyword: Pseudomonas fluorescens

Search Result 250, Processing Time 0.034 seconds

Selection and Antagonistic Mechanism of Pseudomonas fluorescens 4059 Against Phytophthora Blight Disease (고추역병과 시들음병을 방제하는 토착길항세균 Pseudomonas fluorescens 4059의 선발과 길항기작)

  • Jeong, Hui-Gyeong;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.32 no.4
    • /
    • pp.312-316
    • /
    • 2004
  • In oder to select the powerful rhizophere-dorminatable biocontrol agent, we had isolated an indigenous antagonistic bacterium which produced antibiotic and siderophore from a disease suppressive local field soil of Gyungsan, Korea. And we could select the Pseudomosp. 4059 which can strongly antagonize against Fusarium oxysporum and Phytophthora capsici by two kinds of antifungal mechanism that can be caused by the antibiotic of Phenazin, a siderophore and a auxin like subThe selected strain was identified as Pseudomonas fluorescens (biotype A) 4059 by biochemical tests, API $\textregistered$ test, MicroLog TM system and 16S rDNA analysis. The selected antagonistic microorganism, Pseudomosp. 4059 had an antifungal mechanism of antifungal antibiotic and sidrophore. And we were confirmed the antagonistic activity of P fluorescens 4059 with in vitro antifungal test against Phytophthora capsici and in vivo by red-pepper.

Colonizing Ability of Pseudomonas fluorescens 2112, Among Collections of 2,4-Diacetylphloroglucinol-Producing Pseudomonas fluorescens spp. in Pea Rhizosphere

  • Kim, Sang-Dal;Fuente, Leonardo De La;Weller, David M.;Thomashow, Linda S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.6
    • /
    • pp.763-770
    • /
    • 2012
  • Pseudomonas fluorescens 2112, isolated in Korea as an indigenous antagonistic bacteria, can produce 2,4-diacetylphloroglucinol (2,4-DAPG) and the siderophore pyoveridin2112 for the control of phytophthora blight of red-pepper. P. fluorescens 2112 was classified into a new genotype C among the 17 genotypes of 2,4-DAPG producers, by phlD restriction fragment length polymorphism (RFLP). The colonizing ability of P. fluorescens 2112 in pea rhizosphere was equal to the well-known pea colonizers, P. fluorescens Q8r1 (genotype D) and MVP1-4 (genotype P), after 6 cycling cultivations for 18 weeks. Four tested 2,4-DAPG-producing Pseudomonas spp. could colonize with about a 96% dominance ratio against total bacteria in pea rhizosphere. The strain P. fluorescens 2112 was as good a colonizer as other Pseudomonas spp. genotypes in pea plant growth-promoting rhizobacteria.

Expression of Bacillus thringiensis HD-1 gene in rhizobacteria Pseudomonas fluorescens KR164 (근권 길항세균 Pseudomonas fluorescens KR164에 Bacillus thuringiensis HD-1 유전자의 삽입과 발현)

  • Kim, Yeong-Yil;Rhee, Young-Hwan;Kang, Heun-Soo
    • Applied Biological Chemistry
    • /
    • v.35 no.4
    • /
    • pp.227-231
    • /
    • 1992
  • The plasmids pSUPBT and pSUPBTR were constructed with a vector pSUP2021 and the BT toxin gene in the plasmid pES 1. The plasmids constructed were introduced into the antagonistic rhizobacteria P. fluorescens KR164 by conjugation and P. fluorescens having pSUPBT and pSUPBTR were named P. fluorescens KR164(pSUPBT)#2, KR164(pSUPBT)#3, KR164(pSUPBTR)#2 and KR164(pSUPBTR)#3, respectively. The BT toxin gene were identified in all transformants by Southern hybridization and the final product of BT toxin gene was identified only in P. fluorescens KR164(pSUPBTR)#3 by SDS-PAGE. This crystal toxin protein were also observed in electron microscopy.

  • PDF

Inhibition Enzyme-Linked Immunosorbent Assay (ELSIA) for Rapid Dection of Pseudomonas fluorescens in Raw Milk using IgY (난황 laY 항체의 Inhibition Enzyme-Linked Immunosorbant Assay(ELISA)법을 이용한 원유내 Pseudomonas fluorscens의 신속 검출 방법 개발)

  • 이승배;최석호;백두연
    • Food Science of Animal Resources
    • /
    • v.20 no.3
    • /
    • pp.231-235
    • /
    • 2000
  • 원유에 존재하는 Ps. fluorescens의 균수를 신속하게 측정하기 위한 Inhibition Enzyme Linked Immunosorbant Assay (ELSIA)를 개발하기 위해 Ps, fluorescens(KCTC 2344)을 산란계에 접종하여 Ps.fluorescens에 대한 anti-Ps. fluorescens IgY 항체를 생산하고 그 항체의 역기를 ELISA로 측정한 결과 32일까지 항체 역가가 증가하였으며, 분리된 IgY 항체의 titer는 1:128,000으로 나타났다. Anti-Ps.fluorescens IgY 항체에대한 교차반응을 조사한 결과 그람양성균 Lactococcus faecalis, Staphylococcus aureus 뿐만 아니라 그람음성 균인 Achrombacter sal-monisida, Escherichia coil와도 교차반응을 거의 하지 않는 것으로 나타났다. Anti-Ps. fluo-rescens IgY 항체를 가지고 Inhibition ELISA 방법으로 Ps. fluorescens 균수를 신속한 측정할 수 있는 표준곡선을 작성한 결과 Ps. fluorescens균을 5.0$\times$$10^4$cfu/ml부터 5.0$\times$$10^{8}$cfu/ml 측정할 수 있는 것으로 나타났다.

  • PDF

Metabolic Routes of Malonate in Pseudomonas fluorescens and Acinetobacter calcoaceticus

  • Byun, Hye-Sin;Kim, Yu-Sam
    • BMB Reports
    • /
    • v.28 no.2
    • /
    • pp.107-111
    • /
    • 1995
  • In malonate grown Pseudomonas fluorescens, malonate decarboxylase and acetyl-CoA synthetase were induced, whereas in Acinetobacter calcoaceticus malonate decarboxylase, acetate kinase, and phosphate acetyltransferase were induced. In both bacteria malonate decarboxylase was the first, key enzyme catalyzing the decarboxylation of malonate to acetate, and it was localized in the periplasmic space. Acetate thus formed was metabolized to acetyl-CoA directly by acetyl-CoA synthetase in Pseudomonas, and to acetyl-CoA via acetyl phosphate by acetate kinase and phosphate acetyltransferase in Acinetobacter.

  • PDF

Molecular Cloning of the nahC Gene Encoding 1,2-Dihydroxynaphthalene Dioxygenase from Pseudomonas fluorescens

  • KIM, YEO-JUNG;NA-RI LEE;SOON-YOUNG CHOI;KYUNG-HEE MIN
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.1
    • /
    • pp.172-175
    • /
    • 2002
  • The complete nucleotide sequence of the nahC gene from Pseudomonas fluorescens, the structural gene for 1,2-dihydroxynaphthalene (1,2-DHN) dioxygenase, was determined. The 1,2-DHN dioxygenase is an extradiol ring-cleavage enzyme that cleaves the first ring of 1,2-dihydroxynaphthalene. The amino acid sequence of the dioxygenase deduced from the nucleotide sequence suggested that the holoenzyme consists of eight identical subunits with a molecular weight of approximately 34,200. The amino acid sequence of 1,2-DHN dioxygenase showed more than $90\%$ homology with those of the dioxygenases of other Pseudomonas strains. However, sequence similarity with those of the Sphingomonas species was less than $60\%$. The nahC gene of P. fluorescens was moderately expressed in E. coli NM522, as determined by enzymatic activity.

Microbial Degradation of Non-volatile-amine (미생물에 의한 불휘발성아민의 분해)

  • LEE Tae-Seek;PARK Jeong-Heum;LEE Myung-Suk;HUR Sung-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The degradation of non-volatile-amines by microorganisms were investigated. The degra-ding activity could be noted in four strains isolated from fermented sardine sauce, and those were Pseudomonas aeruginosa, Pseudomonas fluorescens P-2, Pseudomonas fluorescens P-3 and Enterobacter aerogenes. The strongest degrading activity of non-volatile-amines was showed in Pseudomonas fluorescens P-3 among the four strains isolated. The optimum temperature for degradation by Pseudomonas fluorescens P-3 was $35^{\circ}C$, corresponding to the optimum temperature for growth of this strain, pH between 7.0 and 7.5 could gave effective degradation and the optimum concentration of NaCl was 0 and/or $1\%$.

  • PDF

PCR-based identification of Pseudomonas fluorescens in diseased olive flounder, Paralichthys olivaceus, in Jeju Island, South Korea

  • Han, So-Ri;Han, Ho-Seok;Evensen, Oystein;Kim, Sung-Hyun
    • Journal of fish pathology
    • /
    • v.30 no.1
    • /
    • pp.67-70
    • /
    • 2017
  • Pseudomonas is currently causing increasing mortality in farmed olive flounder in Jeju Island. It was previously reported that P. anguilliseptica is the pathogen causing the mortality. It is not known whether other sub-species are involved or not. In this study, P. fluorescens was identified from diseased olive flounder by a PCR-based diagnosis. Based on genomic sequencing and BLAST analysis, 5 out of 6 samples were closer with P. fluorescens than P. anguilliseptica. Our finding suggests that P. fluorescens may be the dominant species causing the disease in farmed olive flounder in Jeju Island, South Korea.

Inhibition of yeast Candida growth by protein antibiotic produced from Pseudomonas fluorescens BB2 (Pseudomonas fluorescens BB2 균주가 생산하는 단백질성 항생물질에 의한 효모 Candida 생육 억제)

  • Ahn, Kyung-Joon
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.448-452
    • /
    • 2015
  • The bacterial strain that was isolated from chinese cabbage rhizosphere, showed inhibition of yeast growth. This strain was identified as Pseudomonas fluorescens BB2 by API 20NE test and 16S rRNA gene sequence analysis. P. fluorescens BB2 strain produced antibiotics against yeast as a secondary metabolite effectively when the culture was carried out in YM medium with 3% glucose at $20^{\circ}C$. The protein antibiotic of BB2 strain which was concentrated by ammonium sulfate precipitation and n-butanol extraction inhibited the growth of yeast with the minimal inhibitory concentration of $10{\mu}g/ml$ against Candida albicans KCTC 7965, and the growth of yeast was completely inhibited at $80{\mu}g/ml$. The hydrophilic fraction of n-butanol extraction inhibited the growth of Bacillus cereus ATCC 21366, showed orange halo on chrome azurol S plate, which means the fraction contained iron chelating siderophore. The results of crystal violet uptake through the cell membrane showed that membrane permeability was increased about 9% than control, when the concentration of hydrophobic antibiotic against yeast C. albicans was $60{\mu}g/ml$. As a result, the antibiotic produced by P. fluorescens BB2 against yeast Candida is considered antimicrobial peptide, and this is the first report in the genus Pseudomonas.