• Title/Summary/Keyword: Psi function

Search Result 172, Processing Time 0.032 seconds

A CLASS OF COMPLETELY MONOTONIC FUNCTIONS INVOLVING DIVIDED DIFFERENCES OF THE PSI AND TRI-GAMMA FUNCTIONS AND SOME APPLICATIONS

  • Guo, Bai-Ni;Qi, Feng
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.655-667
    • /
    • 2011
  • A class of functions involving divided differences of the psi and tri-gamma functions and originating from Kershaw's double inequality are proved to be completely monotonic. As applications of these results, the monotonicity and convexity of a function involving the ratio of two gamma functions and originating from the establishment of the best upper and lower bounds in Kershaw's double inequality are derived, two sharp double inequalities involving ratios of double factorials are recovered, the probability integral or error function is estimated, a double inequality for ratio of the volumes of the unit balls in $\mathbb{R}^{n-1}$ and $\mathbb{R}^n$ respectively is deduced, and a symmetrical upper and lower bounds for the gamma function in terms of the psi function is generalized.

QUADRATIC FUNCTIONAL EQUATIONS ASSOCIATED WITH BOREL FUNCTIONS AND MODULE ACTIONS

  • Park, Won-Gil;Bae, Jae-Hyeong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.46 no.3
    • /
    • pp.499-510
    • /
    • 2009
  • For a Borel function ${\psi}:\mathbb{R}{\times}\mathbb{R}{\rightarrow}\mathbb{R}$ satisfying the functional equation $\psi$ (s + t, u + v) + $\psi$(s - t, u - v) = $2\psi$(s, u) + $2\psi$(t, v), we show that it satisfies the functional equation $$\psi$$(s, t) = s(s - t)$$\psi$$(1, 0) + $$st\psi$$(1, 1) + t(t - s)$$\psi$$(0, 1). Using this, we prove the stability of the functional equation f(ax + ay, bz + bw) + f(ax - ay, bz - bw) = 2abf(x, z) + 2abf(y,w) in Banach modules over a unital $C^*$-algebra.

INFINITE SERIES ASSOCIATED WITH PSI AND ZETA FUNCTIONS

  • KIM, YONGSUP
    • Honam Mathematical Journal
    • /
    • v.22 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • We evaluate some interesting families of infinite series expressed in terms of the Psi (or Digamma) and Zeta functions by analyzing the well-known identity associated with $_3F_2$ due to Watson. Some special cases are also considered.

  • PDF

CERTAIN CLASSES OF INFINITE SERIES DEDUCIBLE FROM MELLIN-BARNES TYPE OF CONTOUR INTEGRALS

  • Choi, Junesang;Agarwal, Praveen
    • The Pure and Applied Mathematics
    • /
    • v.20 no.4
    • /
    • pp.233-242
    • /
    • 2013
  • Certain interesting single (or double) infinite series associated with hypergeometric functions have been expressed in terms of Psi (or Digamma) function ${\psi}(z)$, for example, see Nishimoto and Srivastava [8], Srivastava and Nishimoto [13], Saxena [10], and Chen and Srivastava [5], and so on. In this sequel, with a view to unifying and extending those earlier results, we first establish two relations which some double infinite series involving hypergeometric functions are expressed in a single infinite series involving ${\psi}(z)$. With the help of those series relations we derived, we next present two functional relations which some double infinite series involving $\bar{H}$-functions, which are defined by a generalized Mellin-Barnes type of contour integral, are expressed in a single infinite series involving ${\psi}(z)$. The results obtained here are of general character and only two of their special cases, among numerous ones, are pointed out to reduce to some known results.

NEW CLASS OF INTEGRALS INVOLVING GENERALIZED HYPERGEOMETRIC FUNCTION AND THE LOGARITHMIC FUNCTION

  • Kim, Yongsup
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.329-342
    • /
    • 2016
  • Motivated essentially by Brychkov's work [1], we evaluate some new integrals involving hypergeometric function and the logarithmic function (including those obtained by Brychkov[1], Choi and Rathie [3]), which are expressed explicitly in terms of Gamma, Psi and Hurwitz zeta functions suitable for numerical computations.

A DEFINITE INTEGRAL FORMULA

  • Choi, Junesang
    • East Asian mathematical journal
    • /
    • v.29 no.5
    • /
    • pp.545-550
    • /
    • 2013
  • A remarkably large number of integral formulas have been investigated and developed. Certain large number of integral formulas are expressed as derivatives of some known functions. Here we choose to recall such a formula to present explicit expressions in terms of Gamma function, Psi function and Polygamma functions. Some simple interesting special cases of our main formulas are also considered. It is also pointed out that the same argument can establish explicit integral formulas for other those expressed in terms of derivatives of some known functions.

SINGULARITY ORDER OF THE RIESZ-NÁGY-TAKÁCS FUNCTION

  • Baek, In-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.1
    • /
    • pp.7-21
    • /
    • 2015
  • We give the characterization of H$\ddot{o}$lder differentiability points and non-differentiability points of the Riesz-N$\acute{a}$gy-Tak$\acute{a}$cs (RNT) singular function ${\Psi}_{a,p}$ satisfying ${\Psi}_{a,p}(a)=p$. It generalizes recent multifractal and metric number theoretical results associated with the RNT function. Besides, we classify the singular functions using the singularity order deduced from the H$\ddot{o}$lder derivative giving the information that a strictly increasing smooth function having a positive derivative Lebesgue almost everywhere has the singularity order 1 and the RNT function ${\Psi}_{a,p}$ has the singularity order $g(a,p)=\frac{a{\log}p+(1-a){\log}(1-p)}{a{\log}a+(1-a){\log}(1-a)}{\geq}1$.

A class of infinite series summable by means of fractional calculus

  • Park, June-Sang
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.1
    • /
    • pp.139-145
    • /
    • 1996
  • We show how some interesting results involving series summation and the digamma function are established by means of Riemann-Liouville operator of fractional calculus. We derive the relation $$ \frac{\Gamma(\lambda)}{\Gamma(\nu)} \sum^{\infty}_{n=1}{\frac{\Gamma(\nu+n)}{n\Gamma(\lambda+n)}_{p+2}F_{p+1}(a_1, \cdots, a_{p+1},\lambda + n; x/a)} = \sum^{\infty}_{k=0}{\frac{(a_1)_k \cdots (a_{(p+1)}{(b_1)_k \cdots (b_p)_k K!} (\frac{x}{a})^k [\psi(\lambda + k) - \psi(\lambda - \nu + k)]}, Re(\lambda) > Re(\nu) \geq 0 $$ and explain some special cases.

  • PDF