• Title/Summary/Keyword: Publick-key

Search Result 4, Processing Time 0.017 seconds

A Public Key Encryption Scheme Using Algebraic-Geometry Codes (대수기하 부호를 이용한 공개키 암호)

  • Lee Jung-Keun;Kim Jaeheon;Park Sangwoo
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.15 no.6
    • /
    • pp.119-125
    • /
    • 2005
  • We propose a new code-based publick key encryption scheme. It is obtained by modifying the Augot and Finiasz scheme proposed at Eurocrypt 2003. We replace the Reed-Solomon codes with general algebraic-geometry codes and employ Guruswami-Sudan decoding algorithm for decryption. The scheme is secure against Colon's attack or Kiayias and Yung's attack to which the Augot and Finiasz scheme is vulnerable. Considering basic attacks aprlied to the Augot and Finiasz scheme, we claim that the proposed scheme provides similar security levels as the Augot and Finiasz scheme was claimed to provide for given key lengths.

An enhanced method using NP-complete problem in Public Key Cryptography System (NP-complete 문제를 이용한 공개키 암호 시스템 개선)

  • Baek, Jaejong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2865-2870
    • /
    • 2015
  • Recently, due to the hardware computing enhancement such as quantum computers, the amount of information that can be processed in a short period of time is growing exponentially. The cryptography system proposed by Koblitz and Fellows has a problem that it can not be guaranteed that the problem finding perfect dominating set is NP-complete in specific 3-regular graphs because the number of invariant polynomial can not be generated enough. In this paper, we propose an enhanced method to improve the vulnerability in 3-regular graph by generating plenty of invariant polynomials.

Scalable multiplier and inversion unit on normal basis for ECC operation (ECC 연산을 위한 가변 연산 구조를 갖는 정규기저 곱셈기와 역원기)

  • 이찬호;이종호
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.80-86
    • /
    • 2003
  • Elliptic curve cryptosystem(ECC) offers the highest security per bit among the known publick key system. The benefit of smaller key size makes ECC particularly attractive for embedded applications since its implementation requires less memory and processing power. In this paper, we propose a new multiplier structure with configurable output sizes and operation cycles. The number of output bits can be freely chosen in the new architecture with the performance-area trade-off depending on the application. Using the architecture, a 193-bit normal basis multiplier and inversion unit are designed in GF(2$^{m}$ ). It is implemented using HDL and 0.35${\mu}{\textrm}{m}$ CMOS technology and the operation is verified by simulation.

Teen Based Secure Group Communication Scheme for Wireless Sensor Networks (무선 센서네트워크를 위한 TEEN 기반의 안전한 그룹통신 기법)

  • Seo, Il-Soo
    • Convergence Security Journal
    • /
    • v.9 no.2
    • /
    • pp.71-78
    • /
    • 2009
  • It is very difficult to apply previous security protocols to WSNs(Wireless Sensor Networks) directly because WNSs have resource constrained characteristics such as a low computing ability, power, and a low communication band width. In order to overcome the problem, we proposes a secure group communication scheme applicable to WSNs. The proposed scheme is a combined form of the TEEN(Threshold sensitive Energy Efficient sensor Network protocol) clustering based hierarchical routing protocol and security mechanism, and we assume that WSNs are composed of sensor nodes, cluster headers, and base stations. We use both private key and public key cryptographic algorithms to achieve an enhanced security and an efficient key management. In addition, communications among sensor nodes, cluster headers, and base stations are accomplished by a hierarchical tree architecture to reduce power consumption. Therefore, the proposed scheme in this paper is well suited for WSNs since our design can provide not only a more enhanced security but also a lower power consumption in communications.

  • PDF