• Title, Summary, Keyword: Pulse Plasma

Search Result 482, Processing Time 0.034 seconds

유도결합플라즈마 장비에서 Pulse Modulation Plasma의 전자온도와 플라즈마밀도 컨트롤에 관한 연구

  • Jo, Tae-Hun;Yun, Myeong-Su;Son, Chan-Hui;Kim, Dong-Jin;Nam, Chang-Gil;Jeon, Bu-Il;Jo, Gwang-Seop;Gwon, Gi-Cheong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • /
    • pp.406-406
    • /
    • 2012
  • 반도체 공정의 대부분은 plasma를 사용한 공정이 주를 이루고 있다. 이러한 공정에서 최근 선폭의 초 미세화가 진행되면서 pulse modulation plasma에 대한 관심을 가지게 되고 있다. Pulse modulation plasma는 RF 인가 시 일정 간격으로 on, off 시켜주게 된다. 이 때, chamber 내부에서 발생하는 plasma역시 on, off 되게 되는데 이러한 현상을 이용하면 plasma 내의 전자온도가 떨어져서 식각 공정 시 선택비의 개선을 기대할 수 있다. 실제 장비회사에서는 pulse를 이용하기 위한 장비개선 연구가 한창이다. 본 연구에서는 유도결합플라즈마 chamber에서 source와 bias에 RF pulse modulation plasma를 발생시켜 기존 CW (Continuous wave) 방전시킨 plasma의 밀도와 전자온도를 측정하여 차이를 비교, 분석 해보았다.

  • PDF

Effect of Charging on Particle Collection during Synthesis of Nanoparticles by Pulse Plasma (펄스 플라즈마에 의한 나노입자 제조 시 하전이 입자의 포집에 미치는 영향)

  • Kim, Kwang-Su;Kim, Tae-Sung
    • Proceedings of the KSME Conference
    • /
    • /
    • pp.210-214
    • /
    • 2007
  • Silicon nanoparticles are widely studied as a material with great potential for wide applications. For application to present industry, it should be easy to control the characteristics of nanoparticle including the size and structure. In this paper, we investigated the formation of Si nanoparticle using pulse plasma technology. Plasma technology is already quite common in device industry and the size of nanoparticle can be easily controlled according to plasma pulse duration. An inductively-coupled plasma chamber with RF power (13.56 MHz) was used with DC-biased grid $(-200\sim+200\;V)$ installed above the substrate. In order to measure the shape and size of nanoparticle, TEM was used. It was found that the size of nanoparticles can be controlled well with the plasma pulse duration and the collection efficiency is increased with the use of either negative or positive DC-bias.

  • PDF

Effects of Pulse Modulations on Particle Growth m Pulsed SiH4 Plasma Chemical Vapor Deposition Process (펄스 SiH4 플라즈마 화학기상증착 공정에서 입자 성장에 대한 펄스 변조의 영향)

  • Kim, Dong-Joo;Kim, Kyo-Seon
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.173-181
    • /
    • 2006
  • We analyzed systematically particle growth in the pulsed $SiH_4$ plasmas by a numerical method and investigated the effects of pulse modulations (pulse frequencies, duty ratios) on the particle growth. We considered effects of particle charging on the particle growth by coagulation during plasma-on. During plasma-on ($t_{on}$), the particle size distribution in plasma reactor becomes bimodal (small sized and large sized particles groups). During plasma-off ($t_{off}$), there is a single mode of large sized particles which is widely dispersed in the particle size distribution. During plasma on, the large sized particles grows more quickly by fast coagulation between small and large sized particles than during plasma-off. As the pulse frequency decreases, or as the duty ratio increases, $t_{on}$ increases and the large sized particles grow faster. On the basis of these results, the pulsed plasma process can be a good method to suppress efficiently the generation and growth of particles in $SiH_4$ PCVD process. This systematical analysis can be applied to design a pulsed plasma process for the preparation of high quality thin films.

  • PDF

Time-dependent Characteristics of Pulse Modulated rf Plasma (펄스모듈레이션 된 고주파 플라즈마의 시변특성)

  • Lee Sun-Hong;Park Chung-Hoo;Lee Ho-Jun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.11
    • /
    • pp.566-571
    • /
    • 2004
  • Pulse modulation technique provide additional controling method for electron temperature and density in rf and microwave processing plasma. Transient characteristics of electron density and temperature have been measured in pulse modulated rf inductively coupled argon plasma using simple probe circuit. Electron temperature relaxation is clearly identified in the after glow stage. Controllability of average electron temperature and density depends on the modulation frequency and duty ratio. Numerical calculation of time-dependent electron density and temperature have been performed based on the global model. It has been shown that simple langmuir probe measurement method used for continuous plasma is also applicable to time-dependent measurement of pulse modulated plasma.

Electrical Properties of Molybdenum Metal Deposited by Plasma Enhanced - Atomic Layer Deposition of Variation Condition (다양한 조건의 플라즈마 원자층 증착법으로 증착된 Mo 금속의 전기적 특성)

  • Lim, Taewaen;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.715-719
    • /
    • 2019
  • Molybdenum is a low-resistivity transition metal that can be applied to silicon devices using Si-metal electrode structures and thin film solar cell electrodes. We investigate the deposition of metal Mo thin film by plasma-enhanced atomic layer deposition (PE-ALD). $Mo(CO)_6$ and $H_2$ plasma are used as precursor. $H_2$ plasma is induced between ALD cycles for reduction of $Mo(CO)_6$ and Mo film is deposited on Si substrate at $300^{\circ}C$. Through variation of PE-ALD conditions such as precursor pulse time, plasma pulse time and plasma power, we find that these conditions result in low resistivity. The resistivity is affected by Mo pulse time. We can find the reason through analyzing XPS data according to Mo pulse time. The thickness uniformity is affected by plasma power. The lowest resistivity is $176{\mu}{\Omega}{\cdot}cm$ at $Mo(CO)_6$ pulse time 3s. The thickness uniformity of metal Mo thin film deposited by PE-ALD shows a value of less than 3% below the plasma power of 200 W.

Study on the Atmospheric Plasma Characteristics of Dielectric Barrier Discharge due to a Variation of the Duty Ratio of Pulse Modulation (펄스변조의 듀티비 변경에 따른 DBD 대기압 플라즈마 특성 연구)

  • Park, Jong-in;Hwang, Sang-hyuk;Jo, Tae Hoon;Yun, Myoung Soo;Kwak, Hyoung sin;Jin, Gi nam;Jeon, Buil;Choi, Eun Ha;Kwon, Gi-Chung
    • Korean Journal of Materials Research
    • /
    • v.25 no.11
    • /
    • pp.616-621
    • /
    • 2015
  • Atmospheric pressure plasma is used in the biological and medical fields. Miniaturization and safety are important in the application of apply atmospheric plasma to bio devices. In this study, we made a small, pocket-sized inverter for the discharge of atmospheric plasma. We used pulse power to control the neutral gas temperature at which the, when plasma was discharged. We used direct current of 5 V of bias(voltage). The output voltage is about 1 to 2 kilo volts the frequency is about 80 kilo hertz. We analyzsed the characteristics of the atmospheric plasma using OES(Optical emission spectroscopy) and the Current-Voltage characteristic of pulse power. By calculating of the current voltage characteristics, we were able to determine that, when the duty ratio increased, the power that actually effects the plasma discharge also increased. To apply atmospheric plasma to human organisms, the temperature is the most important factor, we were able to control the temperature by modulating the pulse power duty ratio. This means we can use atmospheric plasma on the human body or in other areas of the medical field.

[ $NH_3$ ] Pulse Plasma Treatment for Atomic Layer Deposition of W-N Diffusion Barrier (암모니아 펄스 플라즈마를 이용한 원자층 증착된 질화텅스텐 확산방지막 특성)

  • Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4
    • /
    • pp.29-35
    • /
    • 2004
  • We have deposited the W-N diffusion barrier on Si substrate with $NH_3$ pulse plasma enhanced atomic layer deposition (PPALD) method by using $WF_6$ and $NH_3$ gases. The $WF_6$ gas reacts with Si that the surface corrosion occurs severely, but the $NH_3$ gas incorporated with pulse plasma and $WF_6$ gas are easily deposited W-N thin film without Si surface corrosion. Because the $NH_3$ with pulse plasma can be active species dissociated and chemisorbed on Si. Thus the Si surface are covered and saturated with nitrogen, which are able to deposit the W-N thin film. We also examine the deposition mechanism and the effect of $NH_3$ pulse plasma treatment.

  • PDF

Basic study on laser triggered lightning : The generation of plasma channel by ${CO}_{2}$ laser (레이저에 의한 誘雷의 기초적 연구 -${CO}_{2}$ 레이저에 의한 플라즈마 채널 발생-)

  • 장용무;강형부
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.2
    • /
    • pp.289-293
    • /
    • 1996
  • The basic study on laser triggered lightning was carried out for the active protection of lightning in power transmission system. The lengths of generated plasma channels were simulated numerically for variations of energy and pulse width of CO$_{2}$ laser by Runge-Kutta-Gill method. As results, the effective lengths of plasma channels were 2.3m, 2.67m and 3.4m respectively for energy of 45J, 60J and 100J of CO$_{2}$ laser pulse with pulse width of 50nsec using focusing mirror with focal length of 10m. And also the effects of pulse width of first pulse and tail pulse of CO$_{2}$ laser on the length of plasma channel were examined.

  • PDF