• Title/Summary/Keyword: Pulse frequency

Search Result 1,944, Processing Time 0.031 seconds

A Study on the Performance Analysis of Pulse Repetition Frequency Jitter Compensation for Generating Doppler Profile (도플러 프로파일 생성을 위한 펄스 반복주파수 지터 보상 성능분석에 대한 연구)

  • Lee, Jung-Won;Hwang, Kyu Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.3
    • /
    • pp.213-220
    • /
    • 2020
  • This paper proposes a method on the performance analysis of pulse repetition frequency jitter compensation for generating Doppler profile. Exact phase compensation of each pulse is required to obtain Doppler profiles under pulse repetition frequency jitter. Three parameters such as velocity, pulse repetition frequency, and carrier frequency are examined to cause errors when conducting the pulse repetition frequency jitter compensation, then assuming well-focused Doppler profiles reflect well-conducted pulse repetition frequency jitter compensation, the proposed method in this paper utilizes the contrast to measure how well Doppler profile is generated. These are validated by electromagnetic computation data and computer simulation. Then, it is concluded which parameter is important on the performance analysis of pulse repetition frequency jitter compensation by using the contrast.

Frequency-Modulated Pulse-Amplification Method for Reducing Pulse Shape Distortion

  • Jeong, Jihoon;Cho, Seryeyohan;Hwang, Seungjin;Yu, Tae Jun
    • Journal of the Korean Physical Society
    • /
    • v.73 no.11
    • /
    • pp.1637-1643
    • /
    • 2018
  • To reduce the laser pulse shape distortion accompanying the amplification process and achieve an intended output pulse shape in the Nd:YAG amplifier chain, we propose a frequency-modulated pulse-amplification method. Assuming carrier-frequency-modulated seed pulses, we numerically simulate the pulse amplification in an Nd:YAG amplifier chain where severe distortion occurs. For the calculation, we develop a modified Frantz-Nodvik equation, which enables two inputs with different carrier frequencies. The simulation results indicate that the temporal contrast of the seed pulse needed to obtain a flat output pulse shape is reduced by 16 - 25 dB when frequency modulation is applied.

A Novel Frequency-to-Digital Converter Using Pulse-Shrinking

  • Park, Jin-Ho
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.3C no.6
    • /
    • pp.220-223
    • /
    • 2003
  • In this paper, a new frequency-to-digital converter without an analog element is proposed. The proposed circuit consists of pulse-shrinking elements, latches and D flip-flops, and the operation is based on frequency comparison by the pulse-shrinking element. In the proposed circuit, the resolution of digital output can be easily improved by increasing the number of the pulse-shrinking elements. The FDC performance is improved in viewpoints of operating speed and chip area. In designed FDC, error of frequency-to-digital conversion is less than 0.1 %.

A Study on the Effect of Food Intake on Radial Pulse using Fourier Analysis (음식섭취에 따른 좌우(左右) 촌관척(寸關尺) 6부위 맥파의 주파수 분석)

  • Yim, Yun-Kyoung;Park, Kwang-Suk
    • The Journal of Korean Medicine
    • /
    • v.32 no.4
    • /
    • pp.139-148
    • /
    • 2011
  • Objective: The purpose of this study was to investigate the effect of food intake on the Fourier components of radial pulse wave. Methods: Thirty-one healthy male subjects participated in this study. Radial pulse was measured using 3 dimensional pulse imaging system (DMP-3000) before, right after, 40 minutes after, 80 minutes after and 120 minutes after food intake. Fourier transform was performed and the frequency and amplitude of Fourier components were analyzed. Results: 1. The frequency and the amplitude of Fourier components of radial pulse wave increased significantly after food intake. 2. The frequency of Fourier components increased right after food intake and then gradually decreased as time passed, however the amplitude of Fourier components increased and maintained certain levels and patterns throughout the experimental period of 120 minutes. 3. The change ratios of the frequency and the amplitude of Fourier components after food intake varied with the pulse measuring locations. Conclusions: Food intake exerts an influence on radial pulse wave, resulting in increase of frequency and amplitude of Fourier components. The change ratios of the frequency and the amplitude of Fourier components after food intake varied with the pulse measuring locations.

Independent PRF Generation and Control for Frequency Phase Calibration on Mono-pulse Radar at a Remote Location (원격지에서 모노펄스 레이더의 주파수 위상 교정을 위한 독립된 펄스반복주파수 생성 및 제어)

  • Yang, Jaewon;Yoo, Seungoh;Yoon, Jaehyuk;Lee, Dongju
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.368-373
    • /
    • 2021
  • This paper presents a method of independent pulse repetition frequency(PRF) generation and control for frequency phase calibration on mono-pulse radar at a remote location. In order to generate an independent PRF signal of 320[Hz], pulse width modulation(PWM) of 16-bit timer/counter was applied. For a precision control of PRF signal, 16-bit timer/counter interrupt was changed for each period. Therefore, average frequency of PRF could be controlled by 0.0001[Hz]. To calibrate a frequency phase of mono-pulse radar at a remote location, the proposed PRF generator with a precision control of frequency was used regardless of receiving PRF signal from a radar. For the verification of the proposed PRF generator, theoretical analysis and experimental results are included.

Characteristics on the Breakdown and Frequency Spectrum of High Power Microwave Pulse Propagating through the Atmosphere (고출력 마이크로파 펄스의 대기권 전파시 방전 및 주파수 스펙트럼에 관한 특성)

  • Kim, Yeong-Ju
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.8
    • /
    • pp.591-597
    • /
    • 1999
  • The propagation characteristics of high power microwave pulse in an air-breakdown environment are examined. The maximum electron density produced by microwave air-breakdown is limited to $10^6cm^{-3}$ by the tail-erosion effect. Inorder to increase the electron density, the scheme using two pulses intersecting at a desired height is considered. Increasing the carrier frequency, it is shown that microwave pulse can be transferred without the serious erosion in the numerical simulation. This result is useful for the above scheme. Also, an experiment is conducted to show the tail-erosion effect and confirm that a rapidly generated lossy plasma can cause spectral breaking and frequency shift of a high-power microwave pulse. The experimental results are presented by comparing the frequency spectrum of an incident pulse with that of the pulse transmitted through a self-induced air-breakdown environment. The experimental results show that the amount of frequency upshift is co-related with the ionization rate, whereas that of frequency downshift is correlated with the energy losses from the pulse in the self-generated plasma.

  • PDF

Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings (듀티 싸이클 및 펄스 주파수가 TiAlN 코팅막의 미세구조와 기계적 특성에 미치는 영향에 관한 연구)

  • Chun, Sung-Yong;Hwang, Ju Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.447-452
    • /
    • 2014
  • This paper presents the effects of pulse plasma parameters such as duty cycle and pulse frequency on the properties of TiAlN coatings deposited by asymmetric bipolar pulsed DC magnetron sputtering systems. The results show that, with decreasing duty cycle and increasing pulse frequency, the coating morphology changes from a columnar structure to a dense structure with finer grains. Pulsed sputtered TiAlN coatings showed higher hardness, higher residual stress, and smaller grain sizes than did DC prepared TiAlN coatings. Moreover, residual stress and nanoindentation hardness of pulsed sputtered TiAlN coatings increased with increasing pulse frequency. Meanwhile, the surface roughness decreased continuously with increasing pulsed DC frequency up to 50 kHz.

Mating Call Structure and Variation of the Frog Rana nigromaculata (참개구리(Rana nigromaculata)의 짝짓기 소리의 구조와 변이)

  • 박시룡;양서영
    • The Korean Journal of Ecology
    • /
    • v.20 no.6
    • /
    • pp.423-438
    • /
    • 1997
  • The structure and variation of the mating call in Rana nigromaculata was studied in a population at Da-rak, Chong-won, Chung-buk (36$\circ$ 37' latitude, 127$\circ$ 21' longitude) in Korea. The mating call consists of 3 to 8 pulse groups divided by clear silent intervals. Each pulse group is also composed of fine pulses. Temperature and body size affect the temporal and spectral characteristics of the mating call. Pulse, pulse group repetition rate and dominant frequency rise with increasing temperature, whereas pulse grouprepetition rate and dominant frequency decrease with increasing body size. A playback experiment was designed to establish the effect of a potential intruder on male calling. During the stimulus periods, resident males markedly decreased the pulse repetition rate, and icreased the rate of pulse groups, dominant frequency, and the number of call groups. This results indicate that this species responds in a graded fashion when interacting with other individuals.

  • PDF

Study on the frequency of self-excited pulse jet

  • Wang, Jian;Li, Jiangyun;Guan, Kai;Ma, Tianyou
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.4
    • /
    • pp.206-212
    • /
    • 2013
  • Self-excited pulse jet is a specific nozzle with a closed chamber which can change a continuous jet into a pulse one. Energy of the pulse jet can be output not only unevenly but also with multifrequency. With the peak pressure of pulse jet, the hitting power would be 2~2.5 times higher than that of continuous jet. In order to reveal the correlation between the self-excited pulse frequency and nozzle diameter ratio, nozzle spacing and operating pressure, the model of 3D unsteady cavitation model has been used. We found that with the same nozzle structure parameters and the different operating pressure, the self-excited frequency and the width of peak crest are different, but the wave profiles are similar. With FFT, we also found that the less bandwidth of amplitude in low frequency range will lead to the wider wave crest of outlet velocity in its time domain, and the larger force of the strike will be gained. By studying the St of self-excite nozzle, not only the frequency of a certain nozzle can be predicted, but also a nozzle structure with a certain frequency can be designed.

The Influence of Pulse Frequency and Duty Factor on Surface Characteristics during Low Temperature Plasma Nitrocarburizing Treatment of Duplex Stainless Steel (Duplex Stainless Steel의 저온 플라즈마 침질탄화시 Pulse Frequency 및 Duty Factor에 따른 표면 특성평가)

  • Cheon, Chang-Seok;Lee, Insup
    • Journal of the Korean institute of surface engineering
    • /
    • v.47 no.5
    • /
    • pp.221-226
    • /
    • 2014
  • A low temperature plasma nitrocarburizng was implemented on the duplex stainless steel to achieve the enhancement of surface hardness without degradation of its corrosion resistance. Attempts were made to investigate the influence of Pulse frequency and Duty factor of pulsed power in a high Pulse frequency regime on the surface characteristics of the hardened layer. The hardened layer (S-phase) was formed on all of the treated surfaces. Surface hardness reached up to 1300 $HV_{0.1}$ which is about 4.6 times higher than that of the untreated material (280 $HV_{0.1}$). The thickness of the hardened layer tends to increase lightly with the higher Pulse frequency and the higher Duty factor. The corrosion resistance of nitrocarburized duplex stainless steel was almost similar to that of the untreated material. Both the Pulse frequency and the Duty factor do not have a significant influence on the corrosion property of plasma treated duplex stainless steel.