• 제목/요약/키워드: Pulse pressure

검색결과 1,208건 처리시간 0.027초

충격기류식 여과집진장치의 운전조건 변화에 따른 적정 탈진주기 및 탈진압력 설정 (Prediction of Pulse Pressure and Pulse Interval of Change in Operation Conditions of a Pulse Air Jet Bag Filter)

  • 이덕기;임우택;조재환;최금찬;신현무;장성호;서정민
    • 한국환경과학회지
    • /
    • 제27권6호
    • /
    • pp.349-358
    • /
    • 2018
  • In this study, using coke dust from ironwork, the pulse pressure on a pulse air jet bag filter was investigated considering the influence of the pressure loss due to filtration velocity and pressure intervals. The research on the optimal pulse pressure prediction of a pulse air jet type bag filter using coke dust showed the following results. Pressure loss volatility produced by the pulse pressure under low dust concentration(0.5, $1g/m^3$) and low face velocity(1.25 m/min) was less than $10mmH_2O$. This suggests that the pulse pressure has a low impact on the pressure loss. In contrast, pressure loss volatility under high dust concentration($3g/m^3$) and high face velocity(1.75 m/min) was $25mmH_2O$. Therefore, pulse pressure with high dust concentration and high face velocity has a strong influence on the pressure loss volatility, compared to the condition of low dust concentration and low face velocity. The optimal pulse pressure of inlet dust concentration($0.5g/m^3$) was $6kg/cm^2$ under the same face velocity(1.75 m/min). As concentration increased from 1 to $2g/m^3$, the pulse pressure gradually reached $5kg/cm^2$ thus indicating that the pulse pressure($5kg/cm^2$) is pertinent at a high concentration($3g/m^3$). The pulse intervals: 20, 25 and 30 sec, which are relatively longer than 10 and 15 sec, corresponded to high pressure loss volatility produced by the pulse pressure. Furthermore, low pressure loss volatility was noted at $5kg/cm^2$ of the overall pulse pressure.

토노메트리 측정 관점에서의 부침맥 고찰 (Review on Floating Pulse and Sinking Pulse in the View Point of Tonometric Measurement)

  • 이전;이유정;유현희;이혜정;김종열
    • 한국한의학연구원논문집
    • /
    • 제14권2호
    • /
    • pp.113-119
    • /
    • 2008
  • In pulse diagnosis, floating pulse and sinking pulse are frequently used for diagnosis about where disease is located and how much severe they are. However, in what mechanism floating pulse and sinking pulse arise is not known well. There are two point of views on substantial of floating pulse and sinking pulse. The first one is the floating and sinking degrees is the expression on the depth of pulsation. And, the second one is floating and sinking pulse is based on the response of pulsation to the indent pressure on radial artery. In this paper, we discussed these two opinions in the view point of tonometric measurement. The process for diagnosis on floating pulse and sinking pulse is similar to the tonometric measurement for non invasive blood pressure or intraocular pressure. We modelled the degrees of depth of pulsation with different indent pressures for initial pulsation feeling and different slopes of indent pressure lines. From this modelling, we can confirm the effect of pulsation depth on P-H curve, that is, in the model where lower pulsation is assumed, the shift of optimal indent pressure to the right was observed. The response of pulse pressure to the indent pressure was tried to be modelled with the degrees of mean blood pressure. Consequently, we tried to model the phenomenon of floating and sinking pulse for the first. And, from this modelling, we can get abundant understanding on how floating and sinking pulse can be caused. In the further study, we want to prove the suitability of this tonometric measurement based modelling with various studies including ultrasound measurement for the depth of pulsation in different EMI subjects.

  • PDF

다중회귀모형을 이용한 벤츄리가 없는 충격기류식 여과집진장치 압력손실 예측 (Pressure Drop Predictions Using Multiple Regression Model in Pulse Jet Type Bag Filter Without Venturi)

  • 서정민;박정호;조재환;진경호;정문섭;이병인;홍성철;시바쿠마르;최금찬
    • 한국환경과학회지
    • /
    • 제23권12호
    • /
    • pp.2045-2056
    • /
    • 2014
  • In this study, pressure drop was measured in the pulse jet bag filter without venturi on which 16 numbers of filter bags (Ø$140{\times}850{\ell}$) are installed according to operation condition(filtration velocity, inlet dust concentration, pulse pressure, and pulse interval) using coke dust from steel mill. The obtained 180 pressure drop test data were used to predict pressure drop with multiple regression model so that pressure drop data can be used for effective operation condition and as basic data for economical design. The prediction results showed that when filtration velocity was increased by 1%, pressure drop was increased by 2.2% which indicated that filtration velocity among operation condition was attributed on the pressure drop the most. Pressure was dropped by 1.53% when pulse pressure was increased by 1% which also confirmed that pulse pressure was the major factor affecting on the pressure drop next to filtration velocity. Meanwhile, pressure drops were found increased by 0.3% and 0.37%, respectively when inlet dust concentration and pulse interval were increased by 1% implying that the effects of inlet dust concentration and pulse interval were less as compared with those changes of filtration velocity and pulse pressure. Therefore, the larger effect on the pressure drop the pulse jet bag filter was found in the order of filtration velocity($V_f$), pulse pressure($P_p$), inlet dust concentration($C_i$), pulse interval($P_i$). Also, the prediction result of filtration velocity, inlet dust concentration, pulse pressure, and pulse interval which showed the largest effect on the pressure drop indicated that stable operation can be executed with filtration velocity less than 1.5 m/min and inlet dust concentration less than $4g/m^3$. However, it was regarded that pulse pressure and pulse interval need to be adjusted when inlet dust concentration is higher than $4g/m^3$. When filtration velocity and pulse pressure were examined, operation was possible regardless of changes in pulse pressure if filtration velocity was at 1.5 m/min. If filtration velocity was increased to 2 m/min. operation would be possible only when pulse pressure was set at higher than $5.8kgf/cm^2$. Also, the prediction result of pressure drop with filtration velocity and pulse interval showed that operation with pulse interval less than 50 sec. should be carried out under filtration velocity at 1.5 m/min. While, pulse interval should be set at lower than 11 sec. if filtration velocity was set at 2 m/min. Under the conditions of filtration velocity lower than 1 m/min and high pulse pressure higher than $7kgf/cm^2$, though pressure drop would be less, in this case, economic feasibility would be low due to increased in installation and operation cost since scale of dust collection equipment becomes larger and life of filtration bag becomes shortened due to high pulse pressure.

손목 피부 온도에 의한 맥센서 어레이(array)의 신호 변동 및 보정 (Signal Change and Compensation of Pulse Pressure Sensor Array Due to Wrist Surface Temperature)

  • 전민호;전영주;김영민
    • 센서학회지
    • /
    • 제26권2호
    • /
    • pp.141-147
    • /
    • 2017
  • A pressure sensor in pulse measurement system is a core component for precisely measuring the pulse waveform of radial artery. A pulse sensor signal that measures the pulse wave in contact with the skin is affected by the temperature difference between the ambient temperature and skin surface. In this study, we found experimentally that the signal changes of the pressure sensors and a temperature sensor were caused by the temperature of the wrist surface while the pressure sensor was contacted on the skin surface for measuring pulse wave. To observe the signal change of the pulse sensor caused by temperature increase on sensor surface, Peltier device that can be kept at a set temperature was used. As the temperature of Peltier device was kept at $35^{\circ}C$ (the maximum wrist temperature), the device was put on the pulse sensor surface. The temperature and pressure signals were obtained simultaneously from a temperature sensor and six pressure sensors embedded in the pulse sensor. As a result of signal analysis, the sensor pressure was decreased during temperature increase of pulse sensor surface. In addition, the signal difference ratio of pressure and temperature sensors with respect to thickness of cover layer in pulse sensor was increased exponentially. Therefore, the signal of pressure sensor was modified by the compensation equation derived by the temperature sensor signal. We suggested that the thickness of cover layer in pulse sensor should be designed considering the skin surface temperature.

The Association of Pulse Pressure and Pre-Metabolic Syndrome in Korean Middle Aged Men

  • Shin, Kyung-A
    • 대한의생명과학회지
    • /
    • 제23권2호
    • /
    • pp.73-79
    • /
    • 2017
  • Pulse pressure is an independent risk factor for cardiovascular disease. The aim of the present study was to assess the association between pulse pressure and metabolic syndrome in Korean men. The study subjects were 8,439 adults aged 40 to 64 years, who underwent health screening examination from January 2012 to December 2014 at the Health Promotion Center of one hospital in Gyeonggi-do for general health check-up. They include the metabolic syndrome absent group (Absent, n=3,078), the pre-metabolic syndrome group (Pre-MetS, n=4,242) and the metabolic syndrome group (MetS, n=1,119). Progressive increase in pulse pressure was demonstrated for increasing components of the metabolic syndrome (P<0.001). The pulse pressure according to the degree of the metabolic syndrome was higher in the pre-MetS and MetS groups compared to the Absent group (P<0.001). Systolic and diastolic blood pressure, total cholesterol, triglyceride, fasting glucose, and abdominal obesity positively correlated with pulse pressure (P<0.001).

경험모델을 이용한 충격기류식 여과집진기의 적정 탈진압력 예측 (The Prediction of Optimal Pulse Pressure Drop by Empirical Static Model in a Pulsejet Bag Filter)

  • 서정민;박정호;임우택;강점순;조재환
    • 한국환경과학회지
    • /
    • 제21권5호
    • /
    • pp.613-622
    • /
    • 2012
  • A pilot-scale pulse-jet bagfilter was designed, built and tested for the effects of four operating conditions (filtration velocity, inlet dust concentration, pulse pressure, and pulse interval time) on the total system pressure drop, using coke dust from a steel mill factory. Two models were used to predict the total pressure drop according to the operating conditions. These model parameters were estimated from the 180 experimental data points. The empirical model (EM) with filtration velocity, areal density, inlet dust concentration, pulse interval time and pulse pressure shows the best correlation coefficient (R=0.971) between experimental data and model predictions. The empirical model was used as it showed higher correlation coefficient (R=0.971) compared to that of the Multivariate linear regression(MLR) (R=0.961). The minimum pulse pressure predicted by empirical model (EM) was 5kg/$cm^2$.

5단계 가압에 대한 맥파 변화 분석에 의한 맥 패턴 분류와 부침맥(浮沈脈) 연구 (A study on floating and sinking pulse by classification of pulse pattern through analysis of P-H volume-curve at 5 applied pressure levels)

  • 권선민;강희정;임윤경;이용흠
    • Korean Journal of Acupuncture
    • /
    • 제27권1호
    • /
    • pp.13-22
    • /
    • 2010
  • Objectives: The information on the depth where pulse wave appears is as important as pulse waveform. The aim of this study was to classify pulse pattern using pressure-height(P-H) volume-curve by 5 applied pressure levels to find out the information on the depth of pulse and interpret the floating & sinking pulse in oriental medical pulse diagnosis. Methods: We used 3 dimensional pulse imaging analyser (DMP-3000, DAEYOMEDI Co., Korea), which measures radial pulse waveforms noninvasively by way of tonometric method at 5 applied pressure levels, and shows P-H volume-curves by applied pressure. 448 subjects were enrolled, pulse waveforms were measured and the P-H volume-curves were gained on the three locations of Chon, Kwan, and Cheok. Results: Gained P-H volume curves were classified into 3 types ; increase type, decrease type, and increase-decrease type. Increase-decrease type appeared more often on Chon and Kwan, while increase type appeared more often on Cheok. In a few cases, decrease-type appeared on Chon and Kawn, however it never appeared on Cheok. Conclusions: Through the classification of pulse by P-H volume-curve, we gained the information on the depth of pulse. We speculate the decrease type as floating pulse, the increase-decrease type as middle pulse, and the increase type as sinking pulse in oriental medical pulse diagnosis. After more researches on P-H volume-curve by applied pressure, the P-H volume-curve may be used as an important factor for pulse diagnosis.

손목의 피부특성을 고려한 맥상파 해석모델 개발 (Development of Pulse Wave Analysis Model with Skin Effect)

  • 신상훈
    • 대한한의진단학회지
    • /
    • 제15권2호
    • /
    • pp.159-168
    • /
    • 2011
  • Objectives: The purpose of this study is to develop the pulse wave analysis model with the palpation pressure and the skin effect. Methods: The position of pulse diagnosis was modeled with elastic string system. The skin was modeled with the elastic string, the palpation pressure with tension in the string, and the blood vessel pressure with external force on the string. Using the wave equation in the physics, the simplified pulse model was transformed to the mathematical model. Results: To the verification of the model, the effects of the palpation pressure and the skin effect were tested. Conclusions: There was optimal palpation pressure, describing the exact vessel pressure pattern and maximizing the amplitude of the skin displacement. For the optimal condition, the increased palpation pressure was needed with the increased skin thickness. Therefore, the developed pulse wave analysis model showed the good results.

${\cdot}$ 침맥 진단에 유용한 맥상 파라메터 및 대표맥상 분석 (Analysing of pulse wave parameter and typical pulse pattern for diagnosis in floating and sinking pulses)

  • 이유정;이전;최은지;이혜정;김종열
    • 한국한의학연구원논문집
    • /
    • 제12권2호통권17호
    • /
    • pp.93-101
    • /
    • 2006
  • Pulse feeling is one of the most important diagnosis method in Oriental medicine. But it is not easy to make an objective and standardized diagnosis. In this study, we found how to quantify diagnosis. Specially dally the high practicality in clinic, we search some parameters especially well-related to floating and sinking pulse by statistic analysis. By extension, we find the pulse patterns of the floating and sinking pulse. We choose 15 subjects diagnosed as floating pulse and 15 subjects diagnosed as sinking pulse by oriental doctors. And their pulse signals were acquired by Pulse analyzer which has piezoresistive pressure sensor. For the quantification of the floating and sinking pulse, at first, we examined the parameters which were highly correlated with oriental doctor's diagnosis. And then we derived pulse patterns of the floating-sinking pulse from preprocessed signal and its ensemble average. We also looked trend variation (PH-Curve) between contact and pulse pressure. As a result, statistically there is the biggest difference between contact pressure, the maximum pulse pressure, diastolic area (Ad) and floating and sinking data. Through the PH-Curve, which represented the relationship between contact and pulse pressure, we could divide the floating and sinking pulse clearly. As a basic research of pulse diagnosis algorithm, we can contribute to select essential parameters in diagnosis algorithm And using these diagnosis method, we expect to find typical pulse patterns and some useful parameters about other pulses like slow/rapid, large/fine pulse and so on. We hope that this study will contribute pulse objectification.

  • PDF

맥상파 물리량 속성 총의형성을 위한 델파이 연구 (Delphi Study for Developing Consensus of Physical Attribute in Pressure Pulse Waveform)

  • 이해범;김현호;박영재;박영배
    • 대한한의진단학회지
    • /
    • 제18권3호
    • /
    • pp.137-148
    • /
    • 2014
  • Objectives This study was conducted to derive consensus about physical attributes in pressure pulse waveform and pulse conditions by Delphi study. Methods Delphi research was conducted for 2 rounds via e-mail. 8 Professors who lecture on a diagnostics of K. M. from the society of Korean medicine diagnostics were participated in this survey. They were asked for answering about series of definition for a physical attribute in pressure pulse waveform and combination for physical attributes of pulse conditions. Results 4 survey items were decided to have high validity and 9 survey items were decided to come to consensus about a physical attribute in pressure pulse waveform. 6 pulse condition were decided to come to consensus. Conclusion Using Delphi method, physical attributes in pressure pulse waveform and combinations of physical attribute in pulse condition come to consensus.