• Title/Summary/Keyword: Pulverized fuel

Search Result 78, Processing Time 0.025 seconds

Energy recovery characteristics by combustion of pulverized fuel made from food waste (음식물쓰레기로부터 제조한 분체연료의 연소에 의한 에너지회수 특성)

  • Kim, Sang-Guk;Kwon, Hyo-Lee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.329-330
    • /
    • 2009
  • Food waste contains almost no heavy metals and high fuel ratio 0.14-0.17 that makes it a good candidate for solid fuel. Thermogravimetric analysis showed that volatile matter volatilizes at $200-400^{\circ}C$, and ignition temperature is $460^{\circ}C$. Combustion efficiency measured from energy balance before and after combustion was over 99%. Pulverized fuel made from food waste is a new and renewable energy which contribute to low carbon green economic growth.

  • PDF

Performance Evaluation of Low NOx Pulverized Coal Burner Applied in Coal Fired Boiler Refurbishment Project (석탄연소보일러 개조공사에 적용된 저NOx 미분탄 버너의 성능 평가)

  • Kim, Sang-Hyeun;Song, Si-Hong;Kim, Hyuk-Je;Kim, Hyeok-Pil
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.4
    • /
    • pp.22-26
    • /
    • 2006
  • To meet the environmental requirements, Doosan Heavy Industries & Construction Co., Ltd. (Doosan) had developed low NOx pulverized coal burner and it was applied to boiler retrofit project, 130 ton/hr coal fired cogeneration boiler, in 2003. NOx emissionand unburned carbon (UBC) in fly ash were measured during the commissioning tests. In this paper, the operation results of low NOx pulverized coal burner installed in 130 ton/hr coal fired boiler are presented. Burners emitted 160 ppm (@6 % $O_2$ basis) NOx and 3 % UBC with Chinacoal containing 0.86 % fuel nitrogen. And also it was shown that NOx emission rate of low NOx pulverized coal burner is linearly increased with fuel-nitrogen fraction of coal.

  • PDF

Ignition behaviour of pulverized coal particle during coal combustion (미분탄 연소의 점화 특성에 관한 연구)

  • Li, Dongfang;Kim, Ryang Gyoon;Song, Ju Hun;Jeon, Chung-Hwan
    • 한국연소학회:학술대회논문집
    • /
    • 2012.04a
    • /
    • pp.213-215
    • /
    • 2012
  • As one of the primary fuel sources, oxy-fuel combustion of coal is actively being investigated because of the climate changing problem such like the emission of green house gases. In this paper research about the pulverized coal technology, which is widely used in both power-generating and iron-making processes was studied to invesgate the ignition behaviour of pulverized coal particles during coal combustion as changing the ambient oxygen concentration of the particle. The ignition phenomenon of the coal particles fed into a laminar flow reactor was imaged with a Integrated charged-coupled device (ICCD) camera. The ignition points were determined throught the analysis of the images, and then the ignition delay times were able to be calculated. The experiment results show that a lower oxygen concentration increases the ignition delay time.

  • PDF

Influence of Surrounding Gas and Coal Characteristics on Flame Propagation in Oxy-Fuel Combustion of Pulverized Coal (미분탄 순산소 연소에서 주위 기체와 석탄 특성이 화염전파에 미치는 영향)

  • Kang, Young-Min;Shim, Young-Sam;Moon, Cheor-Eon;Sung, Yon-Mo;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.1
    • /
    • pp.38-45
    • /
    • 2009
  • Oxy-fuel combustion of pulverized coal is one of the promising new technologies to reduce $CO_2$ and NOx from coal combustion. However, the stability of pulverized coal flame is reduced in the oxy-fuel combustion. This flame stability is concerned with the flame propagation that is affected by surrounding gas and coal characteristics, such as gas temperature, gas composition, coal volatile, coal activation energy and coal size. In this paper, a study on the influence of surrounding gas and coal characteristics on the flame propagation velocity in oxy-fuel combustion of pulverized coal was preformed. One dimensional model was used to calculate the flame propagation velocity of pulverized coal clouds. In this model, the radiation is considered to be the main source of heat exchange, and Monte Carlo method was adopted for accurate calculation of radiation heat flux. It was found that the flame propagation velocity become higher with the decrease of coal activation energy and the increase of coal volatile. Also, according to the increase of gas temperature and $O_2$ concentration, flame propagation velocity increased.

A Study on Characteristics of Combustion and Thermo Pyrolysis in Co-firing with Pulverized Coal and Wood Biomass (미분탄과 목재 바이오매스 혼합 연료의 연소 및 열분해 특성에 관한 연구)

  • An, Jae-Woo;Ahn, Seong-Yool;Moon, Cheor-Eon;Sung, Yon-Mo;Seo, Sang-Il;Kim, Tae-Hyung;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of the Korean Society of Combustion
    • /
    • v.15 no.2
    • /
    • pp.34-40
    • /
    • 2010
  • The effect of co-firing with pulverized coal and wood biomass on ignition and burn-out temperature was investigated at air and oxy-fuel conditions by thermo gravimetric analyzer(TGA). Three kinds of coal(shenhua, adaro, wira) were selected and mixing ratios of coal and wood biomass was set to 1, 0.5, and 0.8. The ignition temperature depended on the amount of volatile matter of blended fuel, while the burn-out temperature was dominated by the oxidant ingredients. The oxy-fuel condition with an oxygen ratio(Ofr,o) of 0.3 showed similar tendency with air condition in the heat flow measurement. Volatile matter reaction, however, became dominant when oxygen ratio exceeded 0.8 for co-firing combustion of wood biomass and pulverized coal.

Combustion Characteristics of High Moisture Indonesia Coal as a Pulverized Fuel at Thermal Power Plant (미분탄 화력발전소 연료로서 고수분 인도네시아탄의 연소특성)

  • Kim, Jae-Kwan;Lee, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.14 no.3
    • /
    • pp.16-23
    • /
    • 2009
  • It is strongly desired for coal-fired power plants to utilize not only low-rank coals with high moisture contents, but also lowering cost with diversifying fuel sources. In this study, combustion characteristics of low rank coal with high moisture, and standard pulverized coals are experimentally investigated using TGA (Thermogravimetric Analysis) and DTF (drop tube furnace). The coals tested are three kinds of coal with moisture content ranging from 8.32 to 26.82%. The results show that under the air combustion condition, the burn-out time at TGA rises as moisture content increases, and standard pulverized coal with 8.32% moisture content showed the lowest activation energy of 55.73 kJ/mol. In case of the high amount of moisture, the combustion efficiency decreases due to evaporation heat loss, and unburned carbon in ash produced at combustion process in DTF increased. Aslo, initial deformation temperature of slag attached in alumina tube of DTF decreased with lowering the crytallinity of anorthite and augite. To improve the combustion reactivity and efficiency, it is effective to upgrade through drying the high moisture coal to moisture level (less than 10%) of standard pulverized coal.

  • PDF

Pulverized coal injection system development to raise combustion efficiencies of a blast furnace (고로의 연소효율을 높이기 위한 미분탄 공급 시스템 개발)

  • An, Young-Jin;Kang, Pub-Sung;Kwak, Na-Soo;Choi, Gyung-Min;Lee, Min-Cheol
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3163-3168
    • /
    • 2008
  • Pulverized coal (PC) has become an important auxiliary fuel in the iron and steel industry since the technique of pulverized coal injection (PCI) system was developed for iron making. Combustion efficiencies of pulverized coal in blowpipes and tuyeres under various operational are numerically predicted to recognize the performance with the locations of nozzles in a blast furnace. A variety of parameters including the pulverized coal quantities, oxygen amounts, inlet temperature of the tuyeres and mass flow rate of coal carrier gas are taken into consideration. Also In order to develop more efficient than existing coal injection system, this study applies a flame measurement system using a charge couple device (CCD) camera and frame grabber. And it has used algorithms of auto sampling from flame shape information and composed the device for location control of PCI. This study find to further improve the blast furnace performance by the control of PCI locations.

  • PDF

Theoretical Study on the Characteristics of Pulverized Coal Combustor with 2 Stage Combustion (2단 연소방법에 의한 미분탄 연소기의 특성에 관한 이론적 연구)

  • Joo, Nahm-Roh;Choi, Sang-Il;Kim, Ho-Young
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.103-112
    • /
    • 1997
  • In the combustion of the pulverized coal compared with that of liquid fuel or gaseous fuel, serious pollutants such as ash, $NO_x$ and $SO_x$ are released to surroundings. The objective of this study is the reduction of such pollutants in the combustion process. The modeling of cyclone combustor which uses the method of two stage combustion was carried out. The main burner length, scattering angle and air/fuel ratio were considered as parameters. The results show that the shorter the main burner length is, the less the amounts of coals which exit the combustor directly are, but the scattered input of coal is required anyway in order to collect all ashes. It is recommended that the shorter the main burner length is, the less the scattering angle is. And in the case of the scattered input compared with no scattering, the temperature in the combustor is more uniform and the amount of volatile is more reduced.

  • PDF

The Effect of Particle Size on Combustion Characteristics of Pulverized High-Volatile Bituminous Coal

  • Kim, Hyung-Taek;Jeon, Heung-Shin;Wongee Chun
    • Journal of Energy Engineering
    • /
    • v.6 no.2
    • /
    • pp.162-169
    • /
    • 1997
  • The particle size effect on the combustion characteristics of pulverized coal was investigated in the cylindrical-shape, horizontal furnace, fired in the range of 8.8∼10.6 kw. Three differently-sized fractions (5, 30, and 44 microns in average diameter) of high-volatile bituminous coal, were burned in the test furnace. Burnout behavior of pulverized coal flame were determined through the measurement of stable species concentrations (CO$_2$and H$_2$O). Concentrations of CO$_2$were compared with the theoretical values and the result showed good agreement. Thermal behavior of pulverized coal flame were determined as maximum flame temperatures occurred at fuel-rich conditions in every case. Flame lengths were also determined by decreasing with the particle size decrease. The flame length of the fine sized coal sample was comparable to that produced by distillate oil. The color of the coal flames ranged from orange to yellow, with the flame of the fine size fraction being brighter and yellower than the others.

  • PDF

Analysis of Group Ignition of Pulverized Coal Particles (미분탄의 집단점화 해석)

  • Suh, K.K.;Kim, H.Y.
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.2
    • /
    • pp.1-10
    • /
    • 1999
  • Pulverized coal is widely used as the source of electrical power generation and industrial processes. Numerical analysis on the transient ignition process of the cloud of pulverized coal particles in various cases is carried out. Particle radius, initial particle temperature, number density are chosen as major parameters that influence the characteristics of ignition and combustion. The result can be summarized as follow. The ignition occurs at the position that is closed to the surface of the cloud. Maximum temperature and velocity appear at ignition point, and the concentrations of gaseous fuel and oxidizer decrease rapidly near the ignition point. The chemical reaction takes place in wider zone as number density and particle radius decrease. The ignition delay is shortest when particle radius is about $50\;{\mu}m$, and tends to be shorter as number density and initial ambient temperature increase.

  • PDF