• Title/Summary/Keyword: Pumpjet propulsor

Search Result 9, Processing Time 0.022 seconds

Study of the Self-Propulsion Test and Analysis for a Pumpjet Propulsor in LCT (대형 캐비테이션터널에서 펌프젯 추진기 자항성능 시험 및 해석 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Jung, Hong-Seok;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.271-279
    • /
    • 2022
  • In order to study the self-propulsion test and analysis techniques for the submerged body with pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct which results in the strong interaction between the components. To measure the thrust and torque for duct and stator, a ring-shaped sensor was applied. The test equipment including pumpjet is installed on the stern of the submerged body. As the whole pumpjet including duct and stator was considered as the propulsor from pumpjet open-water test, the self-propulsion test was conducted in the same way. The total thrust, combined thrust of rotor, duct and stator was used for the pumpjet self-propulsion test analysis. Accordingly, the self-propulsion test and analysis were conducted in the same way as those of the conventional propeller. The full-scale performances of the pumpjet propulsor were compared with those of the reference propeller. On the basis of the present study, it is thought that the pumpjet propulsor would be designed optimally.

Study of the Open-Water Test and Analysis for a Pumpjet Propulsor in LCT (대형 캐비테이션터널에서 펌프젯 추진기 단독성능 시험 및 해석 기법 연구)

  • Ahn, Jong-Woo;Seol, Han-Shin;Jung, Hong-Seok;Park, Young-Ha
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.3
    • /
    • pp.149-156
    • /
    • 2022
  • In order to study the open-water test and analysis techniques for pumpjet propulsors in the Large Cavitation Tunnel (LCT), at the Korea Research Institute of Ships and Ocean Engineering, a set of test equipment was designed and manufactured. The pumpjet propulsor is composed of rotor, stator and duct resulting in the strong interaction between the components. A ring-shaped sensor was developed to measure the thrust and torque for duct and stator. The test equipment including the pumpjet is installed on an existing POW dynamometer in the reverse direction. The results from the reverse POW test setup were validated against those from the conventional POW test setup in the Towing Tank (TT) as well as in the LCT. The pumpjet open-water test was conducted at the Reynolds number of around 1.0×106, at which the obtained experimental data became stable in the Reynolds number effect test. The open-water test for the rotor (rotor-only) was conducted to study whether the duct and stator should be considered as a part of the hull or the propulsor. On the basis of the test results, it was shown that the duct and stator could be included in the propulsor. The total thrust, combined thrust of rotor, duct, and stator was used for the pumpjet open-water test analysis. As the whole pumpjet is defined as a propulsor, it is thought that the self-propulsion test and analysis could be conducted in the same way as that of the conventional propeller.

CFD prediction and simulation of a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Sahoo, Prasanta K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • In this study an attempt has been made to study the hydrodynamic performance of pumpjet propulsor. Numerical investigation based on the Reynolds Averaged NaviereStokes (RANS) computational fluid dynamics (CFD) method has been carried out. The structured grid and SST ${\kappa}-{\omega}$ turbulence model have been applied. The numerical simulations of open water performance of marine propeller E779A are carried out with different advance ratios to verify the numerical simulation method. Results show that the thrust and the torque are in good agreements with experimental data. The grid independent inspection is applied to verify accuracy of numerical simulation grid. The numerical predictions of hydrodynamic performance of pumpjet propulsor are carried out with different advance ratios. Results indicate that the rotor provides the main thrust of propulsor and the balance performance of propulsor is generally satisfactory. Additionally, the curve of propulsor efficiency is in good agreement with experimental data. Furthermore, the pressure distributions around rotor and stator blades are reasonable. Beyond that, the existence of tip clearance accounts for the appearance of tip vortex that leads to a further loss in efficiency and a probability of cavitation phenomenon.

Numerical investigations of tip clearance flow characteristics of a pumpjet propulsor

  • Lu, Lin;Gao, Yuefei;Li, Qiang;Du, Lin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.3
    • /
    • pp.307-317
    • /
    • 2018
  • In this study, numerical investigations of the tip clearance flow characteristics of a pumpjet propulsor based on Computational Fluid Dynamics (CFD) method have been presented. The Zwart-Gerber-Belamri (Z-G-B) cavitation model based on Reynolds Averaged Navier-Stokes (RANS) method is employed. The structured gird is applied. The formation and development of the tip clearance flows has been investigated and presented. The structure of the tip leakage vortex has been shown. The radial distributions of different velocity components with different Span along the axial direction have been carried out to present the influence of the tip clearance flow on the main flow. In addition, the influences of the tip clearance size on the pumpjet propulsor performance, including the impact on the velocity flow fields and the cavitation characteristic, have been presented.

Numerical simulation of tip clearance impact on a pumpjet propulsor

  • Lu, Lin;Pan, Guang;Wei, Jing;Pan, Yipeng
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.3
    • /
    • pp.219-227
    • /
    • 2016
  • Numerical simulation based on the Reynolds Averaged Naviere-Stokes (RANS) Computational Fluid Dynamics (CFD) method had been carried out with the commercial code ANSYS CFX. The structured grid and SST $k-{\omega}$ turbulence model had been adopted. The impact of non-condensable gas (NCG) on cavitation performance had been introduced into the Schnerr and Sauer cavitation model. The numerical investigation of cavitating flow of marine propeller E779A was carried out with different advance ratios and cavitation numbers to verify the numerical simulation method. Tip clearance effects on the performance of pumpjet propulsor had been investigated. Results showed that the structure and characteristics of the tip leakage vortex and the efficiency of the propulsor dropped more sharply with the increase of the tip clearance size. Furthermore, the numerical simulation of tip clearance cavitation of pumpjet propulsor had been presented with different rotational speed and tip clearance size. The mechanism of tip clearance cavitation causing a further loss of the efficiency had been studied. The influence of rotational speed and tip clearance size on tip clearance cavitation had been investigated.

Cavitation studies on axi-symmetric underwater body with pumpjet propulsor in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Rao, M. Nageswara
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.185-194
    • /
    • 2010
  • A pumpjet propulsor (PJP) was designed for an underwater body (UWB) with axi-symmetric configuration. Its performance was predicted through CFD study and models were manufactured. The propulsor design was evaluated for its propulsion characteristics through model tests conducted in a Wind Tunnel (WT). In the concluding part of the study, evaluation of the cavitation performance of the pumpjet was undertaken in a cavitation tunnel (CT). In order to assess the cavitation free operation speeds and depths of the body, cavitation tests of the PJP were carried out in behind condition to determine the inception cavitation numbers for rotor, stator and cowl. The model test results obtained were corrected for full scale Reynolds number and subsequently analyzed for cavitation inception speeds at different operating depths. From model tests it was also found that the cavitation inception of the rotor takes place on the tip face side at higher advance ratios and cavitation shifts towards the suction side as the RPS increases whereas the stator and cowl are free from cavitation.

Experimental evaluation of pumpjet propulsor for an axisymmetric body in wind tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.;Saiju, A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-33
    • /
    • 2010
  • Design of a Pump Jet Propulsor (PJP) was undertaken for an underwater body with axisymmetric configuration using axial/low compressor design techniques supported by Computational Fluid Dynamics (CFD) analysis for performance prediction. Experimental evaluation of the PJP was earned out through experiments in a Wind Tunnel Facility (WTF) using momentum defect principle for propulsive performance prior to proceeding with extensive experimental evaluation in towing tank and cavitation tunnel. Experiments were particularly conducted with respect to Self Propulsion Point (SPP), residual torque and thrust characteristics over a range of vehicle advance ratio in order to ascertain whether sufficient thrust is developed at the design condition with least possible imbalance torque left out due to residual swirl in the slip stream. Pumpjet and body models were developed for the propulsion tests using Aluminum alloy forged material. Tests were conducted from 0 m/s to 30 m/s at four rotational speeds of the PJP. SPP was determined confirming the thrust development capability of PJP. Estimation of residual torque was carried out at SPP corresponding to speeds of 15, 20 and 25 m/s to examine the effectiveness of the stator. Estimation of thrust and residual torque was also carried out at wind speeds 0 and 6 m/s for PJP RPMs corresponding to self propulsion tests to study the propulsion characteristics during the launch of the vehicle m water where advance ratios are close to Zero. These results are essential to assess the thrust performance at very low advance ratios to accelerate the body and to control the body during initial stages. This technique has turned out to be very useful and economical method for quick assessment of overall performance of the propulsor and generation of exhaustive fluid dynamic data to validate CFD techniques employed.

Performance evaluation of an underwater body and pumpjet by model testing in cavitation tunnel

  • Suryanarayana, Ch.;Satyanarayana, B.;Ramji, K.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.2
    • /
    • pp.57-67
    • /
    • 2010
  • Experimental investigations were carried out on an Axi-symmetric Body Model fitted with Pump-jet Propulsor (PJP) in the Cavitation Tunnel at Naval Science and Technological Laboratory (NSTL). The tests were intended for evaluating the propulsion characteristics of the body and propulsor. The self propulsion point of the model for two configurations was determined after finding the corrections for tunnel blockage effects and differences in model length at zero trim. The results were found to match closely with the towing tank results. The rotor and stator torques also matched closely over full range of experiment. Further experiments were carried out on the body at $4.5^{\circ}$ angle of trim to investigate the propulsive performance and assess the operational difficulties in the sea. The results indicated an increase in resistance and decrease in rotor thrust; but the balance of torques between the rotor and stator was undisturbed, causing no concern to vehicle roll.

Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion (펌프젯 추진기의 공동 비공동 유동소음에 대한 수치적 연구)

  • Garam Ku;Cheolung Cheong;Hanshin Seol;Hongseok Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.250-261
    • /
    • 2023
  • In this study, the noise contributions by the duct, stator and rotor, which are the propulsor components, are evaluated to identify the flow noise source in cavitation and non-cavitation conditions on pumpjet propulsion and the noise levels in both conditions are compared. The unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equation based on the homogeneous mixture assumption is applied on the suboff submarine hull and pumpjet propeller in the cavitation tunnel, and the Volume of Fluid (VOF) method and Schnerr-Sauer cavitation model are used to describe the two-phase flow. Based on the flow simulation results, the acoustic analogy formulated by Ffowcs Williams and Hawkings (FW-H) equation is applied to predict the underwater radiated noise. The noise contributions are evaluated by using the three types of impermeable integral surface on the duct, stator and rotor, and the two types of permeable integral surface surrounding the propulsor. As a result of noise prediction, the contribution by the stator is insignificant, but it affects the generation of flow noise source due to flow separation in the duct and rotor, and the noise is predominantly radiated into the upward and right where the flow separations are. Also, the noise is radiated into the thrust direction due to pressure fluctuation between suction and pressure sides on the rotor blades, and the it can be seen that the cavitation effect into the noise can be considered through the permeable integral surface.