• Title/Summary/Keyword: Putrefactive bacteria

Search Result 29, Processing Time 0.025 seconds

Development of Predictive Growth Model of Imitation Crab Sticks Putrefactive Bacteria Using Mathematical Quantitative Assessment Model (수학적 정량평가모델을 이용한 게맛살 부패균의 성장 예측모델의 개발)

  • Moon, Sung-Yang;Paek, Jang-Mi;Shin, Il-Shik
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.6
    • /
    • pp.1012-1017
    • /
    • 2005
  • Predictive growth model of putrefactive bacteria of surimi-based imitation crab in the modified surimi-based imitation crab (MIC) broth was investigated. The growth curves of putrefactive bacteria were obtained by measuring cell number in MIC broth under different conditions (Initial cell number, $1.0{\times}10^2,\;1.0{\times}10^3$ and $1.0{\times}10^4$ colony forming unit (CFU)/mL; temperature, $15^{\circ}C,\;20^{\circ}C\;and\;25^{\circ}C$) and applied them to Gompertz model. The microbial growth indicators, maximum specific growth rate constant (k), lag time (LT) and generation time (GT), were calculated from Gompertz model. Maximum specific growth rate (k) of putrefactive bacteria was become fast with rising temperature and fastest at $25^{\circ}C$. LT and GT were become short with rising temperature and shortest at $25^{\circ}C$. There were not significant differences in k, LT and GT by initial cell number (p>0.05). Polynomial model, $k=-0.2160+0.0241T-0.0199A_0$, and square root model, $\sqrt{k}=0.02669$ (T-3.5689), were developed to express the combination effects of temperature and initial cell number, The relative coefficient of experimental k and predicted k of polynomial model was 0.87 from response surface model. The relative coefficient of experimental k and predicted k of square root model was 0.88. From above results, we found that the growth of putrefactive bacteria was mainly affected by temperature and the square root model was more credible than the polynomial model for the prediction of the growth of putrefactive bacteria.

유산균 투여가 건강한 성인의 분변미생물 및 부패산물 생성에 미치는 영향

  • Shin, Myeong-Su;Kim, Yong-Jae;Bae, Hyoung-Suk;Baek, Young-Jin
    • Microbiology and Biotechnology Letters
    • /
    • v.24 no.2
    • /
    • pp.254-260
    • /
    • 1996
  • To investigate the effects of lactic acid bacteria administration on fecal microflora and putrefactive metabolites in human being, Lactobacillus acidophilus and Bifidobacterium longum powder (1.5 $\times$ 10$^{9}$ cells, respectively) was administrated to six healthy volunteers (average 28 years old) twice a day for 2 weeks. During the administration of lactic acid bacteria, the numbers of bifidobacteria, lactobacilli, and enterococci in feces were increased significantly, whereas those of Staphylococcus and lecithinase-negative Clostridium were decreased considerably. In addition, a number of anaerobic Bacteroides were increased. However, the contents of fecal ammonia and putrefactive metabolites (indole, skatole, p-cresole) were not changed during the administration.

  • PDF

Inhibitory effects of Kimchi lactic acid bacteria on harmful enzymes of human intestinal bacteria

  • Han, Seung-Bae;Kim, Dong-Hyun
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.226.3-227
    • /
    • 2003
  • Lactic acid bacteria have been considered as the most beneficial probiotic organisms contributing to inhibition of harmful and putrefactive intestinal bacteria. Among them, Bifidobacterium spp. has been considered as one of the most beneficial probiotic organism that can improve the health of humans, since it is one of the major bacteria flora in human intestine. However, the harmful enzyme-inhibitory activity of lactic acid bacteria of Kimchi, which is a representative Korean fermented food has not been evaluated. (omitted)

  • PDF

Hygienic Superiority of Kimchi (김치의 위생학적 우수성)

  • Kim, Yong-Suk;Shin, Dong-Hwa
    • Journal of Food Hygiene and Safety
    • /
    • v.23 no.2
    • /
    • pp.91-97
    • /
    • 2008
  • Kimchi is a representative traditional food in Korea and a type of vegetable product that is the unique complex lactic acid fermentation in the world. It can be considered as a unique fermented food generated by various flavors, which are not included in raw materials, that can be generated by mixing and fermenting various spices and seasonings, such as red pepper powder, garlic, ginger, and salted fish, added to Chinese cabbages. Functionalities in Kimchi have been approved through several studies and the probiotic function that is mainly based on lactic acid bacteria including their physical functions in its contents has also verified. Studies on the verification of the safety of Kimchi including its physiological functions have been conducted. In particular, the function of lactic acid bacteria, which is a caused of the fermentation of Kimchi. Although the lactic acid bacteria contributed to the fermentation of Kimchi is generated from raw and sub-materials, the lactic acid bacteria attached on Chinese cabbages has a major role in the process in which the fermentation temperature and dominant bacteria are also related to the process. The salt used in a salt pickling process inhibits the growth of the putrefactive and food poisoning bacteria included in the fermentation process of Kimchi and of other bacteria except for such lactic acid bacteria due to the lactic acid and several antimicrobial substances generated in the fermentation process, such as bacteriocin and hydrogen peroxide. In addition, the carbon dioxide gas caused by heterolactic acid bacteria contributes to the inhibition of aerobic bacteria. Furthermore, special ingredients included in sub-materials, such as garlic, ginger, and red pepper powder, contribute to the inhibition of putrefactive and food poisoning bacteria. The induction of the change in the intestinal bacteria as taking Kimchi have already verified. In conclusion, Kimchi has been approved as a safety food due to the fact that the inhibition of food poisoning bacteria occurs in the fermentation process of Kimchi and the extinction of such bacteria.

Effects of Bacillus polyfermenticus SCD Administration on Fecal Microflora and Putrefactive Metabolites in Healthy Adults

  • Park, Kyu-Yong;Jung, Hwang-Yeong;Woo, Kang-Lyung;Jun, Kyoung-Dong;Kang, Jae-Seon;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.4
    • /
    • pp.657-663
    • /
    • 2002
  • Probiotics have been suggested to improve gastrointestinal health in humans. To investigate the effects of Bacillus polyfermenticus SCD administration on fecal microflora and putrefactive metabolites in humans, Bacillus polyfermenticus SCD (4.00${\times}$10$\sub$5/ CFU/mg) was administrated to ten healthy subjects (5 men and 5 women, average age 24 years) three times a day for 2 weeks. Fecal samples were collected before (1st and 2nd weeks, control), during (3rd and 4th weeks), and 2 weeks after the administration. The fo11owing microbial groups were evaluated in the feces: aerobic and anaerobic bacteria, Bacillus polyfermenticus SCD, Lactobacillus, Bifidobacterium, total lactic acid bacteria, Salmonella, Clostridium, Clostridium perfringens, Eubacterium, Staphylococcus, Coliform bacteria, Pseudomunas, and Yeast. Fecal concentrations of total aerobic bacteria (p<0.05, p<0.01, 3rd and 4th weeks), total lactic acid bacteria (p<0.01, 3rd, 4th and 5th weeks), and Bifidobacteria (p<0.05, 4th and 5th weeks) were significantly increased in all subjects, compared to the control, from the 3rd week after the administration of the products. Clostridium (p<0.01, 4th week), Clostridium perfringens (p<0.05, p<0.01, 3rd and 4th weeks), and coliform (p<0.01,5th week) were significantly reduced from the 3rd week of administration. No significant changes in the fecal concentrations of Pseudomonas, Lactobacillus, Eubacterium, Staphylococcus, yeast, and total anaerobes were observed. Six weeks after the administration, the concentration of all rnicroorganlsrns returned to the basal level. Bacillus polyfermenticus SCD was significantly maintained from the 3rd week to 6th week of the study. Despite the absence of a statistical significance, the putrefactive metabolites (ammonia, indole, skatole, and $\rho$-cresol) and the pH value tended to be lower during and after the test periods than the base line. These results show that this probiotic preparation is able to colonize the intestine, and suggest that it may be useful as a beneficial probiotic in humans.

Effect of Panax ginseng Extract on Growth Responses of Human Intestinal Bacteria and Bacterial Metabolism

  • Ahn, Y.J.;Kim, M.J.;Kawamura, T.;Yamamoto, T.;Fujisawa, T.;Mitsuoka, T.
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.111-122
    • /
    • 1990
  • The growth responses of a variety of human Intestinal bacteria to extracts of Pun(1.vKy'n.ieny and five other oriental medicinal Araliaceae were evaluated in vitro and in vivo. The extracts enhanced the growth of Bifidobncterilim breve and B. longum in Media with or without carbon sources, suggesting the bifid factor (5) might be involved in the phenomenon. This effect was most pronounced with water extract of p. ginseng, the growth of 27 bifidobacteria strains belonging to B. ndolexcentium, H. longlrm, and 1. breve and B. iniuntis being greatly stimurated, whereas seven B. bifidum strains and other bacteria such as clostridia and 5.fcherirhia coli had little or no ability to utilizes it (or growth. Methanol extracts of p, ginseng were found to selectively inhibit growth of various clostridia including C. perfringens and C. Paraputrificum, but this effect was not observed on other bacteria including bifidobacteria. The effect of ginseng extract intake(600 mg/day for two weeks) on the fecal microflora, pH, volatile fatty acids, ammonia, putrefactive products, and -glucuronidase, -glucosidase and nitroreductase activities, and on the blood components (triglyceride, total cholesterol and ammonia) were investigated using seven healthy human volunteers. The total concentration of fecal microflora including Bri'idobucterilim app. during the period of ginseng extract intake was significantly unaffected from the proceeding and sub sequent control periods. However, the frequency of occurrence of subjects having C. perfringens was significantly decreased. The fecal pH value was also significantly decreased, suggesting that the intake might increase the activity of Bifidobacterium spp. Other biochemical properties in faces did not changed significantly. The levels of ammonia and triglycerid in blood were decreased with ginseng extract intake. These results may be an indication of at least one of the pharmacological actions of P ginseng as an adaptogen.

  • PDF

Effect of Panax ginseng Extract on Growth Responses of Human Intestinal Bacteria and Bacterial Metabolism (인삼섭취가 장내세균 및 세균대사에 미치는 영향)

  • Ahn, Y.J.;Kim, M.J.;Kawamura, T.;Yamamoto, T.;Fujisawa, T.;Mitsuoka, T.
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.253-264
    • /
    • 1990
  • The growth responses of a variety of human intestinal bacteria to extracts of Panax ginseng and five other oriental medicinal Araliaceae were elraluattd in vitro and in vivo. The extracts enhanced the growth of Brifidobnnerilrm breve and B. longlim in media with or without carbon sources, suggesting that bifidus factors) might be involved in the phenomenon. This effect was most pronounced with water extract of P. ginseng, the growth of 27 bifidobacteria strains belonging to B adolescentis, B. longum, B. brim and B. infantis being greatly stimurated, whereas seven B. bifidum strains and other bacteria such as clostridia and Escherichin soli had little or no ability to utilise it for growth. Methanol extracts of p. ginseng were found to selectively inhibit growth of various clostridia including bifidobacteria. Paraputrificum, but this effect was not observed on other bacteria including bifidobacteria. The effect of ginseng extract intake (600 mg/day for two weeks) on the faecal microflora, pH, volatile fatty acids, ammonia, putrefactive products, and -glucuronidase, -glucosidase and nitroreductase activities, and on the blood components (triglyceride, total cholesterol and ammonia) were investigated using seven healthy human volunteers. The total concentration of faecal microflora including Bifidnkaderiifm app. during the period of ginseng extract intake %twas significantly unaffected from the preceding and subsequent control peroids. However, the frequency of occurrence of subjects having C. perfringens was significantly decreased. The faecal pH value was also significantly decreased, suggesting that the intake might increase the activity of Bifidobncterium spry. Other biochemical properties in faeces did not changed significantly. The levels of ammonia and triglycerid in blood were decreased with ginseng extract intake. These results may be an indication of at least one of the Pharmacological actions of p. ginseng as an adaptogen.

  • PDF

Isolation and Characterization of Yam-Putrefactive Psychrotrophic Bacteria from Rotted Yam (생마 저온부패 원인세균의 분리 및 부패균의 특성)

  • Ryu Hee-Young;Kim Young-Sook;Park Sang-Jo;Lee Bong-Ho;Kwon Soon-Tae;Sohn Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.109-114
    • /
    • 2006
  • Yam has been recognized as healthy food due to its various biological activities, such as anti-obesity, antimicrobial, anticancer and immuno-stimulation activities, and its consumption has been increased during last decades. In this study, to investigate low-temperature, long-term storage of yam and to develop processed yam products, yam-putrefactive psychrotrophic bacteria were isolated from rotted yam and identified based on BBL identification system, fatty acid analysis in cell membrane and 16S rDNA sequence analysis. The putrefaction activity of isolated thirteen bacteria was evaluated using yam-slices (NaOCl-treated, autoclaved yam and without treatment), and YAM-10 and YAM-12 were identified as major psychrotrophic putrefactive bacteria. Both YAM-10 (Pseudomonas cepacia) and YAM-12 (Pseudomonas rhodesiae) bacteria grew well at 4$\sim$12$^{\circ}C$ and showed strong activity of polymer degrading enzymes, especially amylase, carboxy methyl cellulase and xylanase, at 20$^{\circ}C$. But they failed to grow at acidic pH (<5) or alkaline pH (>10). Our results suggested that the control of psychrotrophic Pseudomonas sp. by pH change and inhibition of polymer degrading enzymes, such as amy-lase, are necessary to long-term storage of yam.

Development of Functional Additives and Packaging Paper for Prolonging Freshness of Cut Flowers (절화류의 선도 유지를 위한 기능성 첨가제 및 포장 원지 개발)

  • 김철환;조성환
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.2
    • /
    • pp.32-41
    • /
    • 2002
  • To prolong freshness and to reduce a decay rate of cut flowers during storage and distribution, a new packaging paper was developed with grapefruit seed extracts(GFSE) as a natural microorganism control agent. The GFSE was fractionated in order to identify antibiotic fractions by HPLC equipped with C18-reverse phase column chromatography. Among the active fractions, three ones were identified as 1-chloro-2-methyl-benzene (ο-toluene), N, N-dimethyl-benzenemethaneamine, and 1-〔2-(2-ethylethoxy)ethoxy〕-4-(1,1,3,3- tetra methyl)-benzene, while the other three remained unidentified. The GFSE-added paper displayed an effective inhibitory activity against putrefactive bacteria and fungi which were involved in the decay of flowers. Despite excellent antimicrobial acts of the GFSE-treated packaging paper, it was not possible to prevent the cut flowers from being dehydrated during storage, which led to the reduction of their fresh weight. However, additional treatment for giving water- repellency property to the GFSE-treated paper decreased a reduction rate of the fresh weight up to around 50% compared to the only GFSE-treated one.

High Hydrostatic Pressure Sterilization of Putrefactive Bacteria in Salted and Fermented Shrimp with Different Salt Content (염농도가 다른 새우젓에 존재하는 유해가능 세균의 초고압 살균)

  • Mok, Chul-Kyoon;Song, Ki-Tae
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.3
    • /
    • pp.598-603
    • /
    • 2000
  • This study was conducted to enhance the storage stability and the wholesomeness of salted and fermented shrimp manufactured with different salt levels by high hydrostatic pressure sterilization. The effects of high hydrostatic pressure treatment on the putrefactive bacteria in the fermented shrimps were investigated and the sterilization kinetics was analyzed. The initial microbial counts of the fermented shrimp with 8%, 18% salt aged for 6 weeks at $20^{circ}C$ were $1.6{\times}10^3,\;1.4{\times}10^4$ CFU/g for bacteria grown on Vibrio selective media, $9.3{\times}10^3,\;1.7{\times}10^5$ CFU/g for bacteria grown on Staphylococcus selective media, respectively, and null for bacteria grown on Salmonella selective media. The degree of the sterilization increased with the magnitude of the pressure and the treatment time. The fermented shrimp pressurized at 6,500 atm for 10 min had no detectable bacteria grown on Vibrio and Staphylococcus selective media at $10^2$ CFU/g detecting limit. High hydrostatic pressure sterilization could be analyzed by first order reaction kinetics. The $D_P$ values of the bacteria grown on Vibrio selective media of the fermented shrimp at 18% salt were higher than those at 8% salt, while those of the bacteria grown on Staphylococcus selective media showed an inverse trend. The $z_p$ values of 8% salt fermented shrimp were higher than those of 18% salt for both bacteria grown on Vibrio selective media and Staphylococcus selective media. High hydrostatic pressure treatment could be applied for the sterilization of the fermented shrimp, and the optimum high pressure sterilization condition was 10 min treatment at 6,500 atm.

  • PDF