• Title/Summary/Keyword: Pythium myriotyrum

Search Result 3, Processing Time 0.015 seconds

Pathogenicity and Mycological Characteristics of Pythium myriotylum Causing Rhizome Rot of Ginger (생강뿌리썩음병균 Pythium myriotyrum의 병원성 및 균학적 특성)

  • Kim, Choong-Hoe;Yang, Sung-Seok;Park, Kyong-Seok
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.152-159
    • /
    • 1997
  • Six pathogenic Pythium isolates obtained from diseased ginger rhizomes were identified as Pythum myriotyrum Drechsler based on various morphological and physiological characteristics. The isolates showed strong virulence on underground parts of buds, crowns, rhizomes, roots and aerial parts of leaves and stems as well. The isolates caused rot of germinated seeds of 10 different crops tested, including cucumber and pepper, and markedly inhibited seedling growth of 3 crops tested, including corn and barley. Maximum, optimum and minimum growth temperatures for P. myriotylum were 39~45$^{\circ}C$, 33~37$^{\circ}C$ and 5~7$^{\circ}C$, respectively. Optimum pH for the growth was 6~7. Mycelial linear growth was most rapid on V-8 juice agar, but aerial mycelia were most abundant on PDA and corn meal agar. Zoosporangial and oogonial formation was greatest on V-8 juice agar. Optimum temperatures for the production of zoosporangia and oogonia were 20~35$^{\circ}C$ and 15$^{\circ}C$, respectively.

  • PDF

Pythium myriotyrum에 의한 생강뿌리썩음병의 포장내 발병진전에 미치는 토양소독, 살균제 시용, 좁은 이랑재배 효과

  • 김충희;양성석;한기돈
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.253-259
    • /
    • 1998
  • Effects of soil disinfection, fungicide application, and narrow ridge cultivation on ginger rhizome rot development were examined in two naturally-infested fields at Seosan, Choongnam province. Soil disinfection treatments were assigned to main plots, and fungicide and ridge treatments to sub-plots in a split plot design with three replications. The rhizome rot started in late July, and progressed rapidly until late September with the peak incidence in mid-august to early September. Soil disinfection by dazomet application showed the most prominent inhibition effects in both fields, where the disease was reduced by the treatment from 17.5% to 4.8% in one field, and from 51.0% to 2.2% in the other field. Three to five applications of fungicide metalaxyl-copper during the growing season inhibited the disease by 89.7% in one field, but less effectively in the other field. Narrow ridge cultivation reduced the disease effectively by 78.1% and 63.9%, compared to the unridged control plots in each field, respectively. Germination rate of seed-rhizomes and growth of ginger plants were similar between treatments, except when the plots received improper aeration after applying dazomet, and then the germination rate was significantly reduced. The greatest yields were obtained in the disinfected plots, regardless of rhizome rot incidence, except one control plot with very little disease. Ginger yield was negatively correlated with disease severity. However, the yield of ridge plots averaged 58∼59% compared to those of the unridged plots, due mainly to the half planting rate of the ridge plots. In spatial progress, the disease in the disinfected plots started from a single focus of the inoculum, and spread into the adjacent areas only, whereas in the untreated plots, the disease started from many foci that were distributed over the plot, and rapidly progressed to make an epidemic during the season. The soil density of P. myriotylum in the disinfected plots was not changed or, if not, increased slightly during the season. However, in the untreated plots it increased rapidly to reach the density 3 to 5 times greater by the end of the season.

  • PDF

Ecology of Ginger Rhizome Rot Development Caused by Pythium myriotylum (Pythium myriotyrum에 의한 생강뿌리썩음병의 발생상태)

  • Kim, Choong-Hoe;Yang, Sung-Seok;Hahn, Ki-Don
    • Korean Journal Plant Pathology
    • /
    • v.13 no.3
    • /
    • pp.184-190
    • /
    • 1997
  • Lesion enlargement of ginger rhizome rot was most rapid at 35~40 C, but delayed greatly as temperature decreased. Time needed for a killing a ginger plant, 22~25 cm long, was about 5 days at 35~40 C, but was 15 days at 15 C in a growth chamber test. Higher RH above 90%, higher soil moisture level above 80% of maximum soil moisture capacity, and deeper planting below 4cm enhanced the lesion development on ginger stems and rhizomes. Pythium myriotylum existed in field soil as forms of hyphal portion, hyphal swelling body, or oospore- or zoospore-like bodies, and served as the origin of its colonization. Inocula of P. myriotylum was randomly distributed in soil surface around ginger plants, but its density was decreased as increasing soil depth with the highest density at 0~10 cm soil depth. Population density of P. myriotylum did not vary significantly between the rhizoplane and the rhizosphere soil of a ginger plant, but differed greatly between the disessed and healthy plants with several to several hundreds times higher population in the diseased plants. A positive curvilinear relationship was found between P. myriotylum density and ginger rhizome rot severity.

  • PDF