• Title/Summary/Keyword: Quad-pol

Search Result 6, Processing Time 0.019 seconds

Performance Analysis of Quad-pol SAR System for Wide-Swath Operation Mode (광역관측 운용 모드에 대한 Quad-pol SAR 시스템의 성능 분석)

  • Lim, Jung-Hwan;Yoon, Seong Sik;Lee, Jae-Wook;Lee, Taek-Kyung;Ryu, Sang-Burm;Lee, Hyeon-Cheol;Lee, Sang-Gyu
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.2
    • /
    • pp.141-151
    • /
    • 2019
  • In this study, we propose a performance analysis of a quadrature-polarimetric(quad-pol) synthetic aperture radar(SAR) system for wide-swath operation mode and compare it with a single-pol system based on the operation mode. To achieve a shorter revisit time for an SAR satellite, we must observe a wide area, and two SAR operation modes exist for this purpose, which are called ScanSAR and SweepSAR. In general, a quad-pol SAR system can obtain a greater variety of information about a target than a single-pol system. Because this system affects system performance parameters, analyzing these effects is required. Based on a performance analysis of the wide-swath quad-pol SAR system, the system parameters and appropriate operation mode can be selected to satisfy the performance requirements.

On the Spatial and Temporal Variability of L-band Polarimetric SAR Observations of Permafrost Environment in Central Yakutia

  • Park, Sang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.1
    • /
    • pp.47-60
    • /
    • 2017
  • The permafrost active layer plays an important role in permafrost dynamics. Ecological patterns, processes, and water and ice contents in the active layer are spatially and temporally complex depending on landscape heterogeneity and local-scale variations in hydrological processes. Although there has been emerging interest in the application of optical remote sensing techniques to permafrost environments, optical sensors are significantly limited in accessing information on near surface geo-cryological conditions. The primary objective of this study was to investigate capability of L-band SAR data for monitoring spatio-temporal variability of permafrost ecosystems and underlying soil conditions. This study exploits information from different polarimetric SAR observables in relation to permafrost environmental conditions. Experimental results show that each polarimetric radar observable conveys different information on permafrost environments. In the case of the dual-pol mode, the radar observables consist of two backscattering powers and one correlation coefficient between polarimetric channels. Among them, the dual-pol scattering powers are highly sensitive to freeze/thaw transition and can discriminate grasslands or ponds in thermokarst area from other permafrost ecosystems. However, it is difficult to identify the ground conditions with dual-pol observables. Additional backscattering powers and correlation coefficients obtained from quad-pol mode help understanding seasonal variations ofradar scattering and assessing geo-cryological information on soil layers. In particular, co-pol coherences atHV-basis and circular-basis were found to be very usefultools for mapping and monitoring near surface soil properties.

Evaluation of Polarimetric Parameters for Flood Detection Using PALSAR-2 Quad-pol Data

  • Jung, Yoon Taek;Park, Sang-Eun;Baek, Chang-Sun;Kim, Dong-Hwan
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.117-126
    • /
    • 2018
  • This study aims to evaluate the usability of polarimetric SAR measurements for discriminating water-covered area from other land cover types and to propose polarimetric parameters showing the better response to the flood. Flood-related changes in the polarimetric parameters were studied using the L-band PALSAR-2 quad-pol mode data acquired before and after the severe flood events occurred in Joso city, Japan. The experimental results showed that, among various polarimetric parameters, the HH-polarization intensity, the Shannon entropy, and the surfaces scattering component of model-based decomposition were found to be useful to discriminate water-covered areas from other land cover types. Particularly, an unsupervised change detection with the Shannon entropy provides the best result for an automated mapping of flood extents.

Reflection Symmetry of PALSAR Quad-Pol Imagery in the Amazon Rainforest (아마존 지역 PALSAR 다중편파 자료의 반사대칭성 특성)

  • Kim, Jae-Hun;Yoon, Sun Yong;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.969-979
    • /
    • 2018
  • This paper presents reflection symmetry of polarimetric SAR over the Amazon rainforest in terms of correlation coefficients between the pairs of HH- and HV-pol and VV- and VH-pol data by ALOS PALSAR. The reflection symmetry is defined as a non-zero correlation between HH- and HV-pol and VV- and VH-pol over natural distributed targets, and is a fundamental assumption for cross-talk calibration coefficient computation and for three-component decomposition for polarimetric SAR data. The Amazon rainforest is especially one of the common global reference sites for the reflection symmetry. The correlation coefficients for the pairs of reflection symmetry obtained in this study range from 0.018 to 0.097. The results imply that there exists a non-negligible dependency between co-pol and cross-pol in the distributed natural targets, and consequently the non-zero correlation must be considered as a potential contribution to errors of spaceborne SAR polarimetry to some extent.

Tsunami-induced Change Detection Using SAR Intensity and Texture Information Based on the Generalized Gaussian Mixture Model

  • Jung, Min-young;Kim, Yong-il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.2
    • /
    • pp.195-206
    • /
    • 2016
  • The remote sensing technique using SAR data have many advantages when applied to the disaster site due to its wide coverage and all-weather acquisition availability. Although a single-pol (polarimetric) SAR image cannot represent the land surface better than a quad-pol SAR image can, single-pol SAR data are worth using for disaster-induced change detection. In this paper, an automatic change detection method based on a mixture of GGDs (generalized Gaussian distribution) is proposed, and usability of the textural features and intensity is evaluated by using the proposed method. Three ALOS/PALSAR images were used in the experiments, and the study site was Norita City, which was affected by the 2011 Tohoku earthquake. The experiment results showed that the proposed automatic change detection method is practical for disaster sites where the large areas change. The intensity information is useful for detecting disaster-induced changes with a 68.3% g-mean, but the texture information is not. The autocorrelation and correlation show the interesting implication that they tend not to extract agricultural areas in the change detection map. Therefore, the final tsunami-induced change map is produced by the combination of three maps: one is derived from the intensity information and used as an initial map, and the others are derived from the textural information and used as auxiliary data.

Investigation of Polarimetric SAR Remote Sensing for Landslide Detection Using PALSAR-2 Quad-pol Data

  • Cho, KeunHoo;Park, Sang-Eun;Cho, Jae-Hyoung;Moon, Hyoi;Han, Seung-hoon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.4
    • /
    • pp.591-600
    • /
    • 2018
  • Recent SAR systems provide fully polarimetric SAR data, which is known to be useful in a variety of applications such as disaster monitoring, target recognition, and land cover classification. The objective of this study is to evaluate the performance of polarization SAR data for landslide detection. The detectability of different SAR parameters was investigated based on the supervised classification approach. The classifier used in this study is the Adaptive Boosting algorithms. A fully polarimetric L-band PALSAR-2 data was used to examine landslides caused by the 2016 Kumamoto earthquake in Kyushu, Japan. Experimental results show that fully polarimetric features from the target decomposition technique can provide improved detectability of landslide site with significant reduction of false alarms as compared with the single polarimetric observables.