• Title/Summary/Keyword: Quantum mechanical calculations

Search Result 25, Processing Time 0.023 seconds

Studies of the Monodipole-macrodipole Interactions within α-Helices Using the Point-charge Systems for Alanine

  • Park, Chang-Moon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.6
    • /
    • pp.824-828
    • /
    • 2003
  • Our previous quantum mechanical calculations using polyalanine model systems showed that the monodipolemacrodipoleinteractions selectively stabilize α-helices and make it possible for α-helices to be formed inhydrophobic environment where the solvent effect is not available. The monodipole-macrodipole interactionsin α-helices were studied molecular mechanically using various point-charge systems available. The resultsshow that all the point-charge systems used in the calculations produce the monodipole-macrodipoleinteractions up to about 60% compared to the results of the quantum mechanical calculations. The results ofmolecular mechanical calculations are explained and discussed compared to the results of the quantummechanical calculations.

The Effect of Water in Four Adenine-Thymine and Three Guanine-Cytosine Pairs: Combining Quantum and Statistical Mechanics

  • Lee, Jinkeong;Ham, Sihyun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.151-155
    • /
    • 2015
  • The molecular interactions between the nucleic acid bases and water molecules are important in organism. Despite Adenine-Thymine Hoogsteen base pair and Guanine-Cytosine Watson-Crick base pair have been demonstrated to be most stable in a gas phase, the effect of water on the stability of these base pairs remains elusive. Here we report the structural and thermodynamic characteristics on possible Adenine-Thymine and Guanine-Cytosine base pairs in a gas phase as well as in an aqueous phase by using quantum mechanical method and statistical mechanical calculations. First, we optimized the direct base-pair interaction energies of four Adenine-Thymine base pairs (Hoogsteen base pair, reverse Hoogsteen base pair, Watson-Crick base pair, and reverse Watson-Crick base pair) and three Guanine-Cytosine base pairs (GC1 base pair, GC2 base pair, and Watson Crick base pair) in a gas phase at the $B3LYP/6-31+G^{**}$ level. Then, the effect of solvent was quantified by the electronic reorganization energy and the solvation free energy by statistical mechanical calculations. Thereby, we discuss the effect of water on the stability of Adenine-Thymine and Guanine-Cytosine base pairs, and argue why Adenine-Thymine Watson-Crick base pair and Guanine-Cytosine Watson-Crick base pair are most stable in an aqueous environment.

  • PDF

Introduction to Molecular Dynamic Simulation Employing a Reactive Force Field (ReaxFF) for Simulating Chemical Reactions of SiHx Radicals on Si Surfaces

  • Han, Sang-Su
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.93-93
    • /
    • 2010
  • In this talk, I will introduce a reactive force field (ReaxFF) molecular dynamics (MD) simulation. In contrast to common MD simulations with empirical FFs, we can predict chemical reactions (bond breaking and formation) in large scale systems with the ReaxFF simulation where all of the ReaxFF parameters are from quantum mechanical calculations such as density functional theory to provide high accuracy. Accordingly, the ReaxFF simulation provides both accuracy of quantum mechanical calculations and description of large scale systems of atomistic simulations at the same time. Here, I will first discuss a theory in the ReaxFF including the differences from other empirical FFs, and then show several applications for studying chemical reactions of SiHx radicals on Si surfaces, which is an important issue in Si process.

  • PDF

Charges of TIP4P water model for mixed quantum/classical calculations of OH stretching frequency in liquid water

  • Jeon, Kiyoung;Yang, Mino
    • Rapid Communication in Photoscience
    • /
    • v.5 no.1
    • /
    • pp.8-10
    • /
    • 2016
  • The potential curves of OH bonds of liquid water are inhomogeneous because of a variety of interactions with other molecules and this leads to a wide distribution of vibrational frequency which hampers our understanding of the structure and dynamics of water molecules. Mixed quantum/classical (QM/CM) calculation methods are powerful theoretical techniques to help us analyze experimental data of various vibrational spectroscopies to study such inhomogeneous systems. In a type of those approaches, the interaction energy between OH bonds and other molecules is approximately represented by the interaction between the charges located at the appropriate interaction sites of water molecules. For this purpose, we re-calculated the values of charges by comparing the approximate interaction energies with quantum chemical interaction energies. We determined a set of charges at the TIP4P charge sites which better represents the quantum mechanical potential curve of OH bonds of liquid water.

Atomic-Scale Insights into Material Properties and Design

  • Sinnott, Susan B.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.75-75
    • /
    • 2012
  • This presentation will focus on computational materials research carried out across length scales. Examples will be presented that illustrate the way in which state-of-the-art quantum mechanical calculations and atomistic simulations can be applied to explain experimental data, design new structures, determine mechanisms, and enable new investigations. In particular, the presentation will present key findings from an integrated experimental and computational investigation of the tribological properties of polytetrafluoroethylene and its composites and predictions regarding the mechanical and tribological properties of inorganic nanostructured materials.

  • PDF

Quantum Mechanical Studies for Structures and Energetic of Double Proton Transfer in Biologically Important Hydrogen-bonded Complexes

  • Park, Ki-Soo;Kim, Yang-Soo;Kim, Kyung-Hyun;Kim, Yong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3634-3640
    • /
    • 2011
  • We have performed quantum mechanical calculations to study the geometries and binding energies of biologically important, cyclic hydrogen-bonded complexes, such as formic acid + $H_2O$, formamidine + $H_2O$, formamide + $H_2O$, formic acid dimer, formamidine dimer, formamide dimer, formic acid + formamide, formic acid + formamidine, formamide + formamidine, and barrier heights for the double proton transfer in these complexes. Various ab initio, density functional theory, multilevel methods have been used. Geometries and energies depend very much on the level of theory. In particular, the transition state symmetry of the proton transfer in formamidine dimer varies greatly depending on the level of theory, so very high level of theory must be used to get any reasonable results.

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol

  • Ahmed, Arif;Islam, Syful;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2021
  • In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.

Importance of Accurate Charges in Binding Affinity Calculations: A Case of Neuraminidase Series

  • Park, Kichul;Sung, Nack Kyun;Cho, Art E.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.545-548
    • /
    • 2013
  • It has been shown that calculating atomic charges using quantum mechanical level theory greatly improves the accuracy of docking. A protocol was developed and shown to be effective. That this protocol works is just a manifestation of the fact that electrostatic interactions are important in protein-ligand binding. In order to investigate how the same protocol helps in prediction of binding affinities, we took a series of known cocrystal structures of influenza neuraminidase inhibitors with the receptor and performed docking with Glide SP, Glide XP, and QPLD, the last being a workflow that incorporates QM/MM calculations to replace the fixed atomic charges of force fields with quantum mechanically recalculated ones at a given docking pose, and predicted the binding affinities of each cocrystal. The correlation with experimental binding affinities considerably improved with QPLD compared to Glide SP/XP yielding $r^2$ = 0.83. The results suggest that for binding sites, such as that of neuraminidase, which are laden with hydrophilic residues, protocols such as QPLD which utilizes QM-based atomic charges can better predict the binding affinities.