• Title/Summary/Keyword: Quantum trajectory

Search Result 12, Processing Time 0.03 seconds

Compatibility of Continuous Rabi Oscillation and Discontinuous Quantum Jumps (연속적 라비 진동과 불연속적 양자도약의 양립성)

  • Chough, Young-Tak;Kim, Kisik
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.77-86
    • /
    • 2012
  • The connection between the continuousness of Rabi oscillation and the discontinuity of quantum jumps has long remained one of the conceptual difficulties since the discovery of the quantum physical paradigm. In this study, however, we demonstrate that the behavior of the atom-field composite system gradually changes from the continuous Rabi interaction to the discontinuous quantum jumps as the atom-field coupling strength is reduced. The reduction occurs through enlarging the quantization volume of the mode so that the mode approaches one of the infinitely many modes of the thermal background.

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS

  • Hida, Takeyuki
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.2
    • /
    • pp.275-281
    • /
    • 2001
  • The trajectory of a classical dynamics is determined by the least action principle. As soon as we come to quantum dynamics, we have to consider all possible trajectories which are proposed to be a sum of the classical trajectory and Brownian fluctuation. Thus, the action involves the square of the derivative B(t) (white noise) of a Brownian motion B(t). The square is a typical example of a generalized white noise functional. The Feynman propagator should therefore be an average of a certain generalized white noise functional. This idea can be applied to a large class of dynamics with various kinds of Lagrangians.

  • PDF

Quasiclassical Trajectory Calculations for the Reaction Ne + H2+ → NeH+ + H

  • Wang, Yuliang;Tian, Baoguo;Qu, Liangsheng;Chen, Juna;Li, Hui
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4210-4214
    • /
    • 2011
  • Quasiclassical trajectory (QCT) calculations of Ne + ${H_2}^+$ reaction have been carried out on the adiabatic potential energy surface of the ground state $1^2$ A'. The reaction probability of the title reaction for J = 0 has been calculated, and the QCT result is consistent with the previous quantum mechanical wave packet result. Quasiclassical trajectory calculations of the four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r$, ${\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. Due to the well in $1^2$ A' PES, the reagent vibrational excitation has greater influence on the polarization of the product rotational angular momentum vectors j' than the collision energy.

Optimization of shielding to reduce cosmic radiation damage to packaged semiconductors during air transport using Monte Carlo simulation

  • Lee, Ju Hyuk;Kim, Hyun Nam;Jeong, Heon Yong;Cho, Sung Oh
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1817-1825
    • /
    • 2020
  • Background: Cosmic ray-induced particles can lead to failure of semiconductors packaged for export during air transport. This work performed MCNP 6.2 simulations to optimize shielding against neutrons and protons induced by cosmic radiation Methods and materials: The energy spectra of protons and neutrons by incident angle at the flight altitude were determined using atmospheric cuboid model. Various candidates for the shielding materials and the geometry of the Unit Load Device Container were evaluated to determine the conditions that allow optimal shielding at all sides of the container. Results: It was found that neutrons and protons, at the flight altitude, generally travel with a downward trajectory especially for the particles with high energy. This indicated that the largest number of particles struck the top of the container. Furthermore, the simulation results showed that, among the materials tested, borated polyethylene and stainless steel were the most optimal shielding materials. The optimal shielding structure was also determined with the weight limit of the container in consideration. Conclusions: Under the determined optimal shielding conditions, a significantly reduced number of neutrons and protons reach the contents inside the container, which ultimately reduces the possibility of semiconductor failure during air transport.

Effects of Reagent Rotation on Stereodynamics Information of the Reaction O(1D)+H2 (v = 0, j = 0-5) → OH+H: A Theoretical Study

  • Kuang, Da;Chen, Tianyun;Zhang, Weiping;Zhao, Ningjiu;Wang, Dongjun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2841-2848
    • /
    • 2010
  • Quasiclassical trajectory (QCT) method has been used to investigate stereodynamics information of the reaction $O(^1D)+H_2{\rightarrow}\;OH$+H on the DK (Dobbyn and Knowles) potential energy surface (PES) at a collision energy of 23.06 kcal/mol, with the initial quantum state of reactant $H_2$ being set for v = 0 (vibration quantum number) and j = 0-5 (rotation quantum number). The PDDCSs (polarization dependent differential cross sections) and the distributions of P($\theta_r$), P($\phi_r$), P($\theta_r$, $\phi_r$) have been presented in this work. The results demonstrate that the products are both forward and backward scattered. As j increases, the backward scattering becomes weaker while the forward scattering becomes slightly stronger. The distribution of P($\theta_r$) indicates that the product rotational angular momentum j' tends to align along the direction perpendicular to the reagent relative velocity vector k, but this kind of product alignment is found to be rather insensitive to j. Furthermore, the distribution of P($\phi_r$) indicates that the rotational angular momentum vector of the OH product is preferentially oriented along the positive direction of y-axis, and such product orientation becomes stronger with increasing j.

Divergence of knowledge production strategies for emerging technologies between late industrialized countries: Focusing on quantum technology

  • Kang, Inje;Choung, Jae-Yong;Kang, Dong-in;Park, Inyong
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.246-259
    • /
    • 2021
  • Traditional wisdom on how late industrialized countries follow the technology trajectories of preceding economies is in need of reformation as these countries have attained industrial leadership in a growing number of fields. However, current understandings about these countries' development of their emerging technologies have yet to investigate the divergence of idiosyncratic technology trajectories. The aim of this paper was to explore how their knowledge production strategies in emerging technology sectors are diverging. Specifically, this research examines the changing patterns of knowledge production in quantum technology in South Korea and China by developing a knowledge portfolio and knowledge strategic diagram. According to the knowledge portfolio, the relative literature position differs. In the knowledge strategic diagram, there are diverging patterns in the emerging keywords sector. This paper contributes to the literature by demonstrating the diverging strategies of late industrialized countries in their transition from catch-up to post-catch-up paradigms and provides policy implications for countries developing an idiosyncratic trajectory in emerging technology sectors.

Quantum Mechanical Study of the O(1D) + HCl → OH + Cl Reaction

  • Lin, Shi-Ying;Park, Seung-C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.229-240
    • /
    • 2002
  • Quantum mechanical calculation is performed for the $O(^1D)$ + HCl ${\rightarrow}$OH + Cl reaction using Reactive Infinite Order Sudden Approximation. Shifting approximation is also employed for the l ${\neq}$ 0 partial wave contributions. Various dynamical quantities are calculated and compared with available experimental results and quasiclassical trajectory results. Vibrational distributions agree well with experimental results i.e. product states mostly populated at $v_f$ = 3, 4. Our results also show small peak at $v_f$ = 0, which indicates bimodal vibrational distribution. The results show two significant broad peaks in ${\gamma}_i$ dependence of the cross section, one is at ${\gamma}_i$ = $15^{\circ}-35^{\circ}$ and the another is at ${\gamma}_i$= $55^{\circ}-75^{\circ}$ which can be explained as steric effects. At smaller gi, the distribution is peaked only at higher state ($v_f$ = 3, 4) while at the larger gi, both lower state ($v_f$ = 0) and higher state ($v_f$ = 3, 4) are significantly populated. Such two competing contributions (smaller and larger ${\gamma}_i$) result in the bimodal distribution. From these points we suggest two mechanisms underlying in current reaction system: one is that reaction occurs in a direct way, while the another is that reaction occurs in a indirect way.

An Amber Force Field for S-Nitrosoethanethiol That Is Transferable to S-Nitrosocysteine

  • Han, Sang-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2903-2908
    • /
    • 2010
  • Protein S-nitrosation is common in cells under nitrosative stress. In order to model proteins with S-nitrosocysteine (CysSNO) residues, we first developed an Amber force field for S-nitrosoethanethiol (EtSNO) and then transferred it to CysSNO. Partial atomic charges for EtSNO and CysSNO were obtained by a restrained electrostatic potential approach to be compatible with the Amber-99 force field. The force field parameters for bonds and angles in EtSNO were obtained from a generalized Amber force field (GAFF) by running the Antechamber module of the Amber software package. The GAFF parameters for the CC-SN and CS-NO dihedrals were not accurate and thus determined anew. The CC-SN and CS-NO torsional energy profiles of EtSNO were calculated quantum mechanically at the level of B3LYP/cc-pVTZ//HF/6-$31G^*$. Torsional force constants were obtained by fitting the theoretical torsional energies with those obtained from molecular mechanics energy minimization. These parameters for EtSNO reproduced, to a reasonable accuracy, the corresponding torsional energy profiles of the capped tripeptide ACE-CysSNO-NME as well as their structures obtained from quantum mechanical geometry optimization. A molecular dynamics simulation of myoglobin with a CysSNO residue produced a well-behaved trajectory demonstrating that the parameters may be used in modeling other S-nitrosated proteins.

Behavior of Poisson Bracket Mapping Equation in Studying Excitation Energy Transfer Dynamics of Cryptophyte Phycocyanin 645 Complex

  • Lee, Weon-Gyu;Kelly, Aaron;Rhee, Young-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.933-940
    • /
    • 2012
  • Recently, it has been shown that quantum coherence appears in energy transfers of various photosynthetic lightharvesting complexes at from cryogenic to even room temperatures. Because the photosynthetic systems are inherently complex, these findings have subsequently interested many researchers in the field of both experiment and theory. From the theoretical part, simplified dynamics or semiclassical approaches have been widely used. In these approaches, the quantum-classical Liouville equation (QCLE) is the fundamental starting point. Toward the semiclassical scheme, approximations are needed to simplify the equations of motion of various degrees of freedom. Here, we have adopted the Poisson bracket mapping equation (PBME) as an approximate form of QCLE and applied it to find the time evolution of the excitation in a photosynthetic complex from marine algae. The benefit of using PBME is its similarity to conventional Hamiltonian dynamics. Through this, we confirmed the coherent population transfer behaviors in short time domain as previously reported with a more accurate but more time-consuming iterative linearized density matrix approach. However, we find that the site populations do not behave according to the Boltzmann law in the long time limit. We also test the effect of adding spurious high frequency vibrations to the spectral density of the bath, and find that their existence does not alter the dynamics to any significant extent as long as the associated reorganization energy is changed not too drastically. This suggests that adopting classical trajectory based ensembles in semiclassical simulations should not influence the coherence dynamics in any practical manner, even though the classical trajectories often yield spurious high frequency vibrational features in the spectral density.