• Title/Summary/Keyword: Quantum well

Search Result 670, Processing Time 0.026 seconds

Emission Properties of Europium Complex Utilizing Multilayer Quantum-Well Structure Properties by Vacuum Vapor Deposition Method (진공증착법으로 제작한 다층 구조의 Europium Complex의 발광특성)

  • 이상필;이제혁;이한성;김영관;김정수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.609-612
    • /
    • 1999
  • Organic electroluminescent(EL) devices have received a great deal of attention due to their potential application as full-color displays. They are attractive because of their capability of multicolor emission, ease of fabrication, and operation at a low driving voltage. In this study, single and multiple quantum-well structures consisting of Eu(TTA)$_3$(bpy) complex well layer sandwiched between triphenyldiamine derivative (TPD) layers were fabricated and their photoluminescent electroluminescent characteristics were also investigated. Sharp emission at 616 nm has been observed from the Eu complex in multilayer, single and multiple quantum-well structures. Details on the explanation of electrical properties of these structures will be discussed.

  • PDF

Quantum Modeling of Nanoscale Symmetric Double-Gate InAlAs/InGaAs/InP HEMT

  • Verma, Neha;Gupta, Mridula;Gupta, R.S.;Jogi, Jyotika
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.4
    • /
    • pp.342-354
    • /
    • 2013
  • The aim of this work is to investigate and study the quantum effects in the modeling of nanoscale symmetric double-gate InAlAs/InGaAs/InP HEMT (High Electron Mobility Transistor). In order to do so, the carrier concentration in InGaAs channel at gate lengths ($L_g$) 100 nm and 50 nm, are modelled by a density gradient model or quantum moments model. The simulated results obtained from the quantum moments model are compared with the available experimental results to show the accuracy and also with a semi-classical model to show the need for quantum modeling. Quantum modeling shows major variation in electron concentration profiles and affects the device characteristics. The two triangular quantum wells predicted by the semi-classical model seem to vanish in the quantum model as bulk inversion takes place. The quantum effects thus become essential to incorporate in nanoscale heterostructure device modeling.

Quantum Jump Approach to Stimulated Absorption and Emission

  • Lee, Chang Jae
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1186-1188
    • /
    • 2006
  • In this paper a new theory is presented to treat the problem of stimulated absorption and emission of photons between energy levels from the standpoint of discrete quantum jumps. In order to implement the theory a scheme to avoid the quantum Zeno effect is proposed. Numerical simulations are performed to demonstrate that this approach does not contradict the principles of the standard wave mechanics. It is shown that with this approach one can obtain photon observation statistics as well.

Ligand Binding energy of CdS/ZnS various interfaces: ab-initio study intimately related with anisotropic CdS/ZnS quantum rod growth

  • Jeong, Incheol
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.292-295
    • /
    • 2015
  • The effect of Ligand Binding energy in quantum rod (CdS/ZnS) plays a critical role in anisotropic growth. As mimicking large chain of ligands and using the head of the chain, I plan to bind the quantum rod and ligands so that it can grow well consequently. So the ultimate goal of this study is on how ligand binding can affect the growth of this quantum rod. There are preferred surfaces between the quantum rod and ligands, and we empirically know that ligands which bind the quantum rod; Phosphoric oxide (PO), Phosphoric acid(PA), Carboxylic acid(CA), Trimethylamine(TMA), have strong tendency to be attached on the surfaces of CdS/ZnS; ($11{\bar{2}}0$), ($10{\bar{1}}0$), ($000{\bar{1}}$), (0001). I virtually bond the surface and the ligands, and calculated the ligand binding energy after optimizing their structure, utilizing EDISON simulator. After all, I figured out how they are linked each other and how the quantum rod grows.

  • PDF

The Magnetic Field Dependence Properties of Quasi Two Dimensional Electron-piezoelectric Potential Interacting System in GaN and ZnO

  • Lee, S.H.;Sug, J.Y.;Lee, J.H.;Lee, J.T.
    • Journal of Magnetics
    • /
    • v.16 no.4
    • /
    • pp.408-412
    • /
    • 2011
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in GaN and ZnO. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). Through the analysis of this work, we found the increasing properties of the optical Quantum Transition Line Shapes(QTLSs) which show the absorption power and the Quantum Transition Line Widths(QTLWs) with the magnetic-field in GaN and ZnO. We also found that QTLW, ${\gamma}(B)_{total}$ of GaN < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B < 25 Tesla.

Dielectric cap quantum well disordering for band gap tuning of InGaAs/InGaAsP quantum well structure using various combinations of semiconductor-dielectric capping layers (다양한 반도체-유전체 덮개층 조합을 이용한 InGaAs/InGaAsP 양자우물의 무질서화)

  • 조재원;이희택;최원준;우덕하;김선호;강광남
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.207-211
    • /
    • 2002
  • Band gap tuning by quantum well disordering in $In_{0.53}Ga_{0.47}As/InGaAsP(Q1.25)$ quantum well structure has been investigated using photoluminescence. The threshold temperature for the blue shift was about $750^{\circ}C$ , and the blue shift became larger as the annealing temperature increased. $SiO_2$ showed saturation as the annealing temperature increased. $SiN_x$caused larger blue shift than $SiO_2$, which is considered to be related to the low growth temperature of $SiN_x$. The diffusion of P and Ga are thought to be responsible for the blue shift of the $SiN_x$ and $SiO_2$capped quantum well disordering , respectively.

Study of Localized Surface Plasmon Polariton Effect on Radiative Decay Rate of InGaN/GaN Pyramid Structures

  • Gong, Su-Hyun;Ko, Young-Ho;Kim, Je-Hyung;Jin, Li-Hua;Kim, Joo-Sung;Kim, Taek;Cho, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.184-184
    • /
    • 2012
  • Recently, InGaN/GaN multi-quantum well grown on GaN pyramid structures have attracted much attention due to their hybrid characteristics of quantum well, quantum wire, and quantum dot. This gives us broad band emission which will be useful for phosphor-free white light emitting diode. On the other hand, by using quantum dot emission on top of the pyramid, site selective single photon source could be realized. However, these structures still have several limitations for the single photon source. For instance, the quantum efficiency of quantum dot emission should be improved further. As detection systems have limited numerical aperture, collection efficiency is also important issue. It has been known that micro-cavities can be utilized to modify the radiative decay rate and to control the radiation pattern of quantum dot. Researchers have also been interested in nano-cavities using localized surface plasmon. Although the plasmonic cavities have small quality factor due to high loss of metal, it could have small mode volume because plasmonic wavelength is much smaller than the wavelength in the dielectric cavities. In this work, we used localized surface plasmon to improve efficiency of InGaN qunatum dot as a single photon emitter. We could easily get the localized surface plasmon mode after deposit the metal thin film because lnGaN/GaN multi quantum well has the pyramidal geometry. With numerical simulation (i.e., Finite Difference Time Domain method), we observed highly enhanced decay rate and modified radiation pattern. To confirm these localized surface plasmon effect experimentally, we deposited metal thin films on InGaN/GaN pyramid structures using e-beam deposition. Then, photoluminescence and time-resolved photoluminescence were carried out to measure the improvement of radiative decay rate (Purcell factor). By carrying out cathodoluminescence (CL) experiments, spatial-resolved CL images could also be obtained. As we mentioned before, collection efficiency is also important issue to make an efficient single photon emitter. To confirm the radiation pattern of quantum dot, Fourier optics system was used to capture the angular property of emission. We believe that highly focused localized surface plasmon around site-selective InGaN quantum dot could be a feasible single photon emitter.

  • PDF

A Study on Electrical and Optical Characteristics of InAs/GaAs Self-organized Quantum Dots (InAs/GaAs Self-organized Quantum Dots의 전기.광학적 특성 연구)

  • 김기홍;박종도;배인호;손정식;문병연;이주인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.2
    • /
    • pp.99-103
    • /
    • 2001
  • We present a detailed of the interband transitions of InAs/GaAs self-organized quantum dots(QDs) based on surface photovoltage(SPV), photoreflactance(PR) and photoluminescence(PL) spectroscopies. At room temperature, interband absorption transitions of QDs have been observed by using SPV spectrum, which clearly exhibits three well-resolved absorption transitions of QDs have been observed by using SPV spectrum, which clearly exhibits three well-resolved absorption peaks. The absorption line shape is Gaussian-like. Furthermore, the corresponding interband transitions are also observed in PR and PL experiments at 77K.

  • PDF

Green and Blue Light Emitting InN/GaN Quantum Wells with Nanosize Structures Grown by Metalorganic Chemical Vapor Deposition

  • Kim, Je-Won;Lee, Kyu-Han
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.2
    • /
    • pp.127-130
    • /
    • 2005
  • The structural and electrical properties of InN/GaN multiple quantum wells, which were grown by metalorganic chemical vapor deposition, were characterized by transmission electron microscopy and electroluminescence measurements. As the quantum well growth time was changed, the wavelength was varied from 451 to 531 nm. In the varied current conditions, the blue LED with the InN MQW structures did not have the wavelength shift. With this result, we can expect that the white LEDs with the InN MQW structures do not show the color temperature changes with the variations of applied currents.