• 제목/요약/키워드: Quasi-Three-Dimensional Method

검색결과 88건 처리시간 0.02초

CLASSIFICATION OF THREE-DIMENSIONAL CONFORMALLY FLAT QUASI-PARA-SASAKIAN MANIFOLDS

  • Erken, Irem Kupeli
    • 호남수학학술지
    • /
    • 제41권3호
    • /
    • pp.489-503
    • /
    • 2019
  • The aim of this paper is to study three-dimensional conformally flat quasi-para-Sasakian manifolds. First, the necessary and sufficient conditions are provided for three-dimensional quasipara-Sasakian manifolds to be conformally flat. Next, a characterization of three-dimensional conformally flat quasi-para-Sasakian manifold is given. Finally, a method for constructing examples of three-dimensional conformally flat quasi-para-Sasakian manifolds is presented.

원심압축기의 유동해석을 위한 준삼차원 해석기법 (Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis)

  • 안상준;김광용
    • 한국유체기계학회 논문집
    • /
    • 제6권1호
    • /
    • pp.30-36
    • /
    • 2003
  • This paper presents the analysis of flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no backsweep. The results are compared with experimental data and the results of three-dimensional inviscid analysis with those by finite element method. It is found that the agreements with experimental data are good for the cases where viscous effects are not dominant.

원심압축기의 유동해석을 위한 준삼차원 해석기법 (Flow Analysis of Centrifugal Compressor Using Quasi-Three-Dimensional Analysis)

  • 안상준;오형우;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.106-112
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor impeller by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

준삼차원 방법에 의한 원심 압축기의 성능예측 (Performance Prediction of Centrifugal Compressor Impellers using Quasi-Three-Dimensional Analysis)

  • 안상준;오형우;김광용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.628-633
    • /
    • 2001
  • This paper presents analysis of the flows through three different types of radial compressor by using quasi-three-dimensional analysis method. The method obtains two-dimensional solution for velocity distribution on meridional plane, and then calculates approximately the static pressure distributions on blade surfaces. Finite difference method is used for the solutions of governing equations. The compressors have low level compression-ratio and 12 straight radial blades with no sweepback. The results are compared with experimental data and the results of inviscid analysis with finite element method. It can be concluded that the agreement is good for the cases where viscous effects are not dominant.

  • PDF

사면보강 뿌리말뚝공법의 준3차원적 안정해석기법 (Method of Quasi-Three Dimensional Stability Analysis of the Root Pile System on Slope Reinforcement)

  • 김홍택;강인규;박사원
    • 한국지반공학회지:지반
    • /
    • 제13권5호
    • /
    • pp.101-124
    • /
    • 1997
  • The root pile system is insitu soil reinforcement technique that uses a series of reticulately installed micropiles. In terms of mechanical improvement by means of grouted reinform ming elements, the root pile system is similar to the soil nailing system. The main difference between root piles and soil nailing are due to the fact that the reinforcing bars in root piles are normally grouted under high pressure and that the alignments of the reinforcing members differ. Recently, the root pile system has been broadly used to stabilize slopes and retain excavations. The accurate design of the root pile system is, however, a very difficult tass owing to geometric variety and statical indetermination, and to the difficulty in the soilfiles interaction analysis. As a result, moat of the current design methods have been heavily dependent on the experiences and approximate approach. This paper proposes a quasi-three dimensional method of analysis for the root pile system applied to the stabilization of slopes. The proposed methods of analysis include i) a technique to estimate the change in borehole radium as a function of the grout pressure as well as a function of the time when the grout pressure is applied, ii) a technique to evaluate quasi -three dimensional limit-equilibrium stability for sliding, iii) a technique to predict the stability with respect to plastic deformation of the soil between adjacent root piles, and iv) a quasi -three dimensional finite element technique to compute stresses and dis placements of the root pile structure barred on the generalized plane strain condition and composite unit cell concept talon형 with considerations of the group effect and knot effect. By using the proposed technique to estimate the change in borehole radius as a function of the grout pressure as well as a function of the time, the estimations are made and compar ed with the Kleyner 8l Krizek's experimental test results. Also by using the proposed quasi-three dimensional analytical method, analyses have been performed with the aim of pointing out the effects of various factors on the interaction behaviors of the root pile system.

  • PDF

원심 임펠러의 설계기술 개발 (Development of a Design Technique for Centrifugal Impellers)

  • 윤의수;최범석;최태민
    • 연구논문집
    • /
    • 통권22호
    • /
    • pp.5-19
    • /
    • 1992
  • An aerodynamic design technique of a centrifugal impeller is developed. The design procedure consists of a preliminary design, a three-dimensional blade surface generation, a flow analysis of impeller passage and a compatibility analysis for the designed impeller. To get a higher efficiency, the backswept impeller which has a lean angle and a parabolic blade surface is designed. In the present analysis of flow in an impeller, an inviscid quasi-three-dimensional method and a viscous three-dimensional method are used. Compatibility of the designed impeller is decided with the results of the analyses. The quasi-three-dimensional method is easy to use, but limited to a few conditions in real application for the prediction of the actual flow in the impeller. Since the viscous three-dimensional method proved to predict the real flow in the impeller relatively well, it can be used as a means for the decision of compatibility of the designed impeller.

  • PDF

Simulation of Quench in Pancake-shaped Superconducting Magnet Using a Quasi-three-dimensional Model

  • Wang, Qiuliang;Yoon, Cheon-Seog;Kim, Kee-Man
    • Progress in Superconductivity
    • /
    • 제1권2호
    • /
    • pp.125-134
    • /
    • 2000
  • A quench phenomenon is caused by an external disturbance in a superconducting magnet, where the magnet is operating in a cryogenic environment. The heat coupling between the layers and pancakes of the magnet can induce the normal zone propagation with fast speed. In order to analyze quench behavior in a pancake-shaped superconducting magnet, a quasi-three-dimensional model is proposed. A moving mesh finite volume method is employed in solving the heat conduction equation. The quench process of the superconducting magnet is studied under the various operating conditions and cooling conditions.

  • PDF

SHAPE OPTIMIZATION OF COMPRESSOR BLADES USING 3D NAVIER-STOKES FLOW PHYSICS

  • Lee K. D.;Chung J.;Shim J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 춘계 학술대회논문집
    • /
    • pp.1-8
    • /
    • 2001
  • A CFD-based design method for transonic axial compressor blades was developed based on three-dimensional Navier-Stokes flow physics. The method employs a sectional three-dimensional (S3D) analysis concept where the three-dimensional flow analysis is performed on the grid plane of a span station with spanwise flux components held fixed. The S3D analysis produced flow solutions nearly identical to those of three-dimensional analysis, regardless of the initialization of the flow field. The sectional design based on the S3D analysis can include three-dimensional effects of compressor flows and thus overcome the deficiencies associated with the use of quasi-three-dimensional flow physics in conventional sectional design. The S3D design was first used in the inverse triode to find the geometry that produces a specified target pressure distribution. The method was also applied to optimize the adiabatic efficiency of the blade sections of Rotor 37. A new blade was constructed with the optimized sectional geometries at several span stations and its aerodynamic performance was evaluated with three-dimensional analyses.

  • PDF

Three-dimensional limit analysis of seismic stability of tunnel faces with quasi-static method

  • Zhang, B.;Wang, X.;Zhang, J.S.;Meng, F.
    • Geomechanics and Engineering
    • /
    • 제13권2호
    • /
    • pp.301-318
    • /
    • 2017
  • Based on the existing research results, a three-dimensional failure mechanism of tunnel face was constructed. The dynamic seismic effect was taken into account on the basis of quasi-static method, and the nonlinear Mohr-Coulomb failure criterion was introduced into the limit analysis by using the tangent technique. The collapse pressure along with the failure scope of tunnel face was obtained through nonlinear limit analysis. Results show that nonlinear coefficient and initial cohesion have a significant impact on the collapse pressure and failure zone. However, horizontal seismic coefficient and vertical seismic proportional coefficient merely affect the collapse pressure and the location of failure surface. And their influences on the volume and height of failure mechanism are not obvious. By virtue of reliability theory, the influences of horizontal and vertical seismic forces on supporting pressure were discussed. Meanwhile, safety factors and supporting pressures with respect to 3 different safety levels are also obtained, which may provide references to seismic design of tunnels.

축류 압축기 설계 및 성능/유동 해석 프로그램 개발 (Development of Axial Compressor Design and Performance/Flow Analysis Program)

  • 윤성호;이광렬;박준영;박태진;최민석;백제현
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.658-663
    • /
    • 2001
  • In this study, the axial-compressor design and performance/flow analysis program is developed. A mean-line analysis was used to determine optimum arrangement of overall geometry and its off-design performance is predicted by stage-stacking method. Three dimensional blade shape is generated using radial equilibrium equation and vortex methods. Various blade shape is generated and their performance is compared. Finally the quasi-three dimensional flow analysis is applied to investigate the detailed flow phenomena.

  • PDF