• Title/Summary/Keyword: Quay

Search Result 214, Processing Time 0.031 seconds

An analysis about the coefficient used to estimate the quay capacity at the container terminal (컨테이너 터미널의 적정 안벽능력 분석에 적용되는 계수들에 대한 분석)

  • 김창곤
    • Journal of Korean Port Research
    • /
    • v.14 no.3
    • /
    • pp.259-267
    • /
    • 2000
  • This study aims to analyse the coefficient used to estimate the quay capacity per year at the container terminal. The capacity of the container terminal is composed of the capacity at the quay side and the other working conditions at the back of the quay side. But when we refer the capacity of the container terminal, generally we used capacity as that of the container terminal. To estimate the quay capacity independently of the working conditions at the back of quay side, we calculate the quay capacity as th product of working hours per year, productivity of container crane and relate other coefficients, such that berth utilization, crane utilization and efficiency. So that coefficients are properly defined to reflect the other working conditions. If we calculate the quay capacity by the product of working hours modified by the berth utilization and crane productivity modified by the crane utilization and efficiency, the meaning of that coefficients must be strictly defined. So there could be no confusion to apply that coefficients to calculate the quay capacity. In this study, we exclusively define the meaning of the berth utilization, crane utilization and efficiency according to the internal-meaning of thats in the function to calculate the quay capacity. And compare each coefficients by decomposing the working hours at the terminal.

  • PDF

Quay Wall Scheduling of Ships Using Assignment Method and Tabu Search Algorithm (할당기법과 타부서치 알고리즘을 이용한 선박의 안벽배치 계획)

  • Lee, Sang Hyup;Hong, Soon Ik;Ha, Seung Jin
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.41 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • In shipbuling processes, a quay wall is a major resource for additional operations after an erection operation at dock. A quay wall is becoming a new bottleneck instead of docks, while ship types with long operation time at quay wall are increasing recently. We developed a quay wall scheduling algorithm for the quayside operations of ships in this paper. The objective function is to minimize the sum of not assigned days of ships which have to be assigned to any quay wall under limited numbers of quay walls. The scheduling algorithm is based on an assignment method to assign each ship to a quay wall among its alternative quay walls at the time of launching or moving to another quay wall. The scheduling algorithm is also using Tabu Search algorithm to optimize assignment sequence of ships. The experiment shows that the algorithms in this paper are effective to make schedule of the quayside operations of ships.

Shaking Table Tests for Evaluation of Seismic Performance of L-type Caisson Quay Walls (L형 케이슨 안벽 구조물의 내진성 평가를 위한 진동대 시험)

  • 한진태;황재익;이용재;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.148-156
    • /
    • 2003
  • Shaking table tests and pseudo-static analysis were performed, in this study, on newly-designed aseismatic L-type caisson quay walls, which were constructed by extending the bottom plate of gravity quay walls into the backfill soil. The L-type quay walls are expected to give economical benefits by reducing the cross-sectional area of the wall while maintaining its aseismatic efficiency as much as the classical caisson gravity quay wall. To confirm the effectiveness of the L-type structure, the geometry of L-type quay walls were varied for shaking table tests. And, to verify the influence of backfill soils on the seismic behavior of quay walls, additional shaking table tests were performed on the L-type quay wall after the backfill soils were replaced by gravels and light materials. As a result, it was found that L-type caisson quay walls are good earthquake resistant structures but increasing the length of bottom plate did not proportionally increase the effectiveness of the structure in its aseismatic performance. Replacing the backfill soils by the gravels and light materials, contrary to our expectation, was not an effective measure in improving the seismic performance of L-type caisson quay wall.

  • PDF

Seismic behavior of caisson-type gravity quay wall renovated by rubble mound grouting and deepening

  • Kim, Young-Sang;Nguyen, Anh-Dan;Kang, Gyeong-O
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.447-463
    • /
    • 2021
  • Caisson-type structures are widely used as quay walls in coastal areas. In Korea, for a long time, many caisson-type quay walls have been constructed with a low front water depth. These facilities can no longer meet the requirements of current development. This study developed a new technology for deepening existing caisson-type quay walls using grouting and rubble mound excavation to economically reuse them. With this technology, quay walls could be renovated by injecting grout into the rubble mound beneath the front toe of the caisson to secure its structure. Subsequently, a portion of the rubble mound was excavated to increase the front water depth. This paper reports the results of an investigation of the seismic behavior of a renovated quay wall in comparison to that of an existing quay wall using centrifuge tests and numerical simulations. Two centrifuge model tests at a scale of 1/120 were conducted on the quay walls before and after renovation. During the experiments, the displacements, accelerations, and earth pressures were measured under five consecutive earthquake input motions with increasing magnitudes. In addition, systematic numerical analyses of the centrifuge model tests were also conducted with the PLAXIS 2D finite element (FE) program using a nonlinear elastoplastic constitutive model. The displacements of the caisson, response accelerations, deformed shape of the quay wall, and earth pressures were investigated in detail based on a comparison of the numerical and experimental results. The results demonstrated that the motion of the caisson changed after renovation, and its displacement decreased significantly. The comparison between the FE models and centrifuge test results showed good agreement. This indicated that renovation was technically feasible, and it could be considered to study further by testbed before applying in practice.

Design of the Various Capacity Wedge-type Rail Clamp for a Quay crane According to the Design Wind Speed Criteria Change (설계 풍속 상향 조정에 따른 Quay crane용 제용량 쐐기형 레일 클램프 설계)

  • Lee J.M.;Han G.J.;Shim J.J.;Han D.S.;Lee S.W.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1626-1629
    • /
    • 2005
  • Recently many countries have concentrated their effort on the port automation, in order to be the Hub-port, that the Ultra Large Container Ship could come alongside the Quay, in their region. As the magnitude of the container ship increase, that of the Quay crane increases from 50ton-class to 61ton-class more and more. The wind speed criteria to design the structures used in the port was upgraded from 20m/s to 40m/s due to change of the weather condition. Our laboratory could have the ability to design the wedge type rail clamp for 50ton-class Quay crane in 30m/s wind speed. Accordingly we analyzed the load condition of the Quay crane about 40m/s wind speed upgraded from 20m/s and designed the wedge type rail clamp for 50ton and 61ton-class Quay crane.

  • PDF

Target Probability of Failure of Quay Wall Foundation for Reliability-Based Design (안벽기초 구조물의 신뢰성설계를 위한 목표파괴확률 결정)

  • Yoon, Gil-Lim;Yoon, Yeo-Won;Kim, Hong-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.379-389
    • /
    • 2010
  • It is very important to determine a target probability of failure in reliability based design such as an allowable factor of safety in working stress design because they are indices to judge the stability of structures. We have carried out reliability analyses of nationwide gravity type quay walls and found that sliding and foundation failures of quay walls were dominant failure modes for every case of loads. And a target probability of failure for bearing capacity of foundation of quay wall was also determined in this study. Of several approaches which have been suggested until now, a couple of reasonable approaches were used. Firstly, in order to consider the safety margin of structures which have been executed so far, the reliability levels of existing structures were assessed. And then a mean probability of failure for the quay walls was estimated. In addition, life cycle cost(LCC) analyses for representative structures were performed. Probabilities of failure for several quay walls were calculated with changing the width of each quay wall section. LCC of quay wall which is requiring case by case during the service life was evaluated, and also the optimum probability of failure of quay wall which minimizes LCC was found. Finally, reasonable target probabilities of failure were suggested by comparing with mean probability of failure of existing structures.

  • PDF

Evaluation of Seismic Performance of Quay Walls during Earthquakes (지진동을 받는 안벽 구조물의 내진 성능 평가)

  • 김성렬
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.112-119
    • /
    • 2000
  • the shaking table tests for 5 different model sections are performed to investigate the behaviors of quay walls during earthquakes and to evaluate the seismic performance of quay walls with countermeasures. 5 different model sections describe the cases of dense soil and loose soil in the foundation repectively the case to which gravel backfill was applied and the cases to which light material replacement method and sand compction pile method was applied repectively for sesmic countermeasure methods. Pore water pressures accelerations and deformations in quay walls and grounds are analyzed. As a result the softening of foundation and backfill soils have much influence on the behaviors of quay walls. Also light material replacement method and sand compaction pile method are effective in improving the seismic performance of quay walls.

  • PDF

Numerical simulation for a passing ship and a moored barge alongside quay

  • Nam, B.W.;Park, J.Y.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.10 no.5
    • /
    • pp.566-582
    • /
    • 2018
  • A moored barge alongside quay can be influenced by a nearby passing ship and its ship-generated waves. In this study, a time-domain numerical method based on a three-dimensional potential flow solver is developed to investigate the passing ship problem with a moored barge alongside quay. Potential flows around the passing ship and the moored barge alongside a quay is directly solved by using a classical finite element method. Total computational meshes including a passing ship, a moored barge and a quay is updated at each step with an efficient re-mesh algorithm. To validate the developed numerical method, a conventional ship wave problem and a passing ship problem on the open sea has been solved and the solutions are compared with the existing data. Then, a series of numerical computations were carried out to investigate the passing ship effect on a moored barge alongside quay. The characteristics of the passing ship effects are studied with varying the simulation parameters such as passing ship speed, separation distance, wall distances and waves. Focus is made on hydrodynamic forces due to the passing ship effect and its ship waves.

Dynamic Analysis of Gravity Quay Wall Considering Development of Excess Pore Pressure in Backfill Soil (과잉간극수압 발생을 고려한 중력식 안벽구조물의 동적해석)

  • Ryu, Moo-Sung;Hwang, Jai-Ik;Kim, Sung-Ryul
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.5
    • /
    • pp.39-47
    • /
    • 2010
  • In this paper, a total stress analysis method for gravity quay walls is suggested. The method can evaluate the displacement of the quay walls considering the effect of excess pore pressure developed in backfill soils. This method changes the stiffness of backfill soils according to the expected magnitude of the excess pore pressure. For practical application, evaluation methods are suggested for determining the excess pore pressure ratio developed in the backfill soils and the backfill stiffness that corresponds to the excess pore pressure ratio. This method is important in practical applications because the displacement of the quay walls can be evaluated by using only the basic input properties in the total stress analysis. The applicability of the suggested method was verified by comparing the results of the analysis with the results of 1-g shaking table tests. From the comparison, it was found that the calculated displacements from the suggested method showed good agreement with the measured displacements of the quay walls. It was also found that the excess pore pressure in backfill soils is a governing influence on the dynamic behavior of quay walls.

Performance Evaluation of Earthquake Resistant Caisson Type Quay Walls (케이슨식 안벽의 내진보강 성능 평가 -수치해석적 측면에서-)

  • 권오순;황성춘;박우선
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.129-139
    • /
    • 2000
  • The liquefaction of reclaimed land generally caused the harbor facilities to hazards. In Korea, the major harbor quay walls are gravity type and the gravity quay wall is not a good earthquake resistant structure. Recently, various earthquake resistant quay walls have been suggested, but the study on the efficiency of reinforced quay wall was not much performed. In this study, numerical analysis is carried out for performance evaluation of easily adoptable earthquake resistant quay walls. The results of numerical analysis are compared with shaking table test that is performed at the same cross-section.

  • PDF