• Title/Summary/Keyword: R-134a

Search Result 667, Processing Time 0.03 seconds

The Effect of R-134a and R-430a on the Performance of Refrigeration Equipment for R-134a (R-134a용 냉동장치의 성능에 미치는 R-134a와 R-430a의 영향)

  • Byun, Chul-Kju;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.34
    • /
    • pp.21-26
    • /
    • 2014
  • The effect of refrigerant R-134a and R-430a on the performance of refrigeration equipment for R-134a is investigated. Refrigeration effect, compression work and coefficient of performance of refrigeration equpment for both R-134a and R-430a are obtained by experimentation. These performances comparison between R-134a and R-430a is made in case of the maximum load. Refrigeration effect for R-134a and that for R-430a is almost equal while compression work for R-134a is less than that for R-430a. Consequently it shows that coefficient of performance for R-134a is relatively 11% higher than that for R-430a.

  • PDF

Performance of R1234yf and R1234yf/R134a Mixture under Mobile Air-conditioner Operating Conditions (R1234yf와 R1234yf/R134a의 자동차 에어컨 작동 조건에서의 성능 평가)

  • Park, Ki-Jung;Lee, Yo-Han;Choe, Dae-Seong;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.12
    • /
    • pp.837-844
    • /
    • 2010
  • In this study, performance of R1234yf and R1234yf/R134a mixture is measured on a heat pump bench tester in an attempt to substitute R134a used widely in mobile air conditioners (MACs). The bench tester is equipped with a open type compressor providing a nominal capacity of 3.5 kW. All tests are conducted under the summer cooling and winter heating conditions of 7/4 $5^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser, respectively. For R1234yf/R134a mixture, measurements are made at 5%, 10%, and 15% of R134a by mass. Test results show that the coefficient of performance (COP) and capacity of R1234yf are up to 2.7% and 4.0% lower than those of R134a, respectively. For R1234yf/R134a mixture, the COP and capacity are up to 3.9% lower and 3.6% higher than those of R134a. For R1234yf and R1234yf/R134a mixture, the compressor discharge temperature is $4.1{\sim}6.7^{\circ}C$ lower than that of R134a while the amount of charge is reduced up to 11% as compared to R134a. 90%R1234yf/10%R134a is a better refrigerant than pure R1234yf in that it is less flammable and more compatible with existing R134a system. Based upon the results, it is concluded that R1234yf and R1234yf/R134a mixture are long term environmentally friendly solutions to mobile air-conditioners due to their excellent environmental properties with acceptable performance.

Computer Simulation Study for Analyzing Alternative Refrigerants in Residential Air-conditioners (가정용 냉방기의 대체 냉매 성능 분석을 위한 전산 해석 연구)

  • Yoo, Hwaan-Kyu;Jung, Dong-Soo
    • Solar Energy
    • /
    • v.15 no.3
    • /
    • pp.75-90
    • /
    • 1995
  • This paper is concerned about alternative refrigerants for HCFC22 used in room air conditioners and heat pumps. Computer simulation of residential air conditioners using refrigerant mixtures is carried out. Following refrigerants are selected as the pure refrigerants constituting the mixtures studied: R32, R124, R125, R134, R134a, R143a and R152a. Simulation results are presented fur the following mixtures: R32/R134a, R32/R152a, R32/R134, R32/R124, R143a/R134a, R143a/R152a, R143a/R124, R125/R134a, R125/R152a, R125/R124, R32/R152a/R134a, R32/R152a/R134, R32/R152a/R124. The best fluid is found to be the ternary mixture of R32/R152a/R124. For that mixture, the coefficient of performance(COP) and volumetric capacity for refrigeration(VCR) are 13.7% larger and 23% smaller than the respective values for HCFC22. R32/R124 mixture is the best binary fluid pair whose COP and VCR are 13.4% larger and 9.6% smaller than those for HCFC22.

  • PDF

Comparison of Exergy in a Refrigerating System using R404A and R134a for a Refrigeration Truck with Operating Conditions (운전조건에 따른 R404A와 R134a를 적용한 냉동탑차용 냉장시스템의 엑서지 비교)

  • Shin, Yunchan;Kim, Taejung;Cho, Honghyun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.11
    • /
    • pp.497-503
    • /
    • 2014
  • The performances of refrigeration truck systems using R404A and R134a were investigated by experimental testing, and compared. The optimal COPs of the R404A and R134a systems were 2.96 and 3.42, when the refrigerant charge amount was 1.3 kg and 1.4 kg, respectively. When the indoor side air temperature increased from $5^{\circ}C$ to $9^{\circ}C$, the total exergy destruction rate of the R404A system was on average 39.1% higher than that of the R134a system. In addition, the exergy efficiency of the R404A system was 12.9% higher than that of R134a system, for various indoor air temperatures. When the outdoor side air temperature increased from $25^{\circ}C$ to $35^{\circ}C$, the total exergy destruction rate of the R404A and R134a systems decreased by 18.9% and 19.5%, respectively. In addition, the exergy efficiency of the R404A and R134a systems increased by 25.2% and 30.7%, respectively. As the compressor rotating speed increased, the COP of the R404A and R134a systems decreased by 23.6% and 18.4%. The total exergy destruction rate and exergy efficiency of the R404A system were 27.2% and 15.7% higher than those of R134a system, respectively. Compared to the R404A system, the R134a system showed a higher COP and a lower exergy destruction rate; thus it can be concluded that the R134a system has the better performance.

Cycle Simulation of the Air-Conditioner Using Alternatives to R22 (R22의 대체냉매를 사용한 공기조화기의 성능 시뮬레이션)

  • Chang, S.D.;Ro, S.T.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.6 no.1
    • /
    • pp.47-53
    • /
    • 1994
  • Cycle simulation of the air-conditioner was carried out using a number of candidate alternatives to R22;R32/R125/R134a(30/10/60, by mass percent), R32/R125/R134a(10/70/20), R32/R134a(25/75), R32/R134a(30/70), R32/R125(60/40), R290(propane) and R134a. In this study, we considered only the basic parts of the air-conditioner such as the compressor, the evaporator, the condenser and the capillary tube, for the purpose of analysis. The performance characteristics of alternatives considered here were examined by comparing with the case using R22 at the constant volumetric flow rate condition. The results of our analysis revealed that the use of refrigerant mixtures, R32/R134a(30/70) and R32/R125/R134a(30/10/60), was appropriate for the alternatives to R22 in view of the cooling capacity and the COP. For the case of using R134a and R290, the COP was observed to increase under the same volumetric flow rate condition, but the cooling capacity was substantially decreased. Therefore the use of R134a and R290 should be accompanied with increasing considerably the size of compressor in order to maintain the same cooling capacity of R22.

  • PDF

Investigation of the Performance of the Alternative Refrigerant HFC-134a through Capillary tube : Numerical Analysis (대체냉매 HFC-134a의 모세관 성능에 관한 수치해석적 연구)

  • Kim, C.N.;Park, Y.M.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.169-178
    • /
    • 1993
  • Performance charts of capillary tubes for R-134a are presented. The calculation is based on the one-dimensional, adiabatic flow through capillary tube. The length of capillary tube changes with inlet pressure, mass flux, inlet quality(or subcooling), and inside diameter. The length for R-134a is shorter by 12.5~23% than that for R-12 as mass flux varies, by 13~18.5% as inlet pressure changes, by 15~15.2% as inside diameter changes, and by 3.6~20% as subcooling(or quality) changes. In general, the length for R-134a is shorter than that for R-12 by 10~20%. Pressure drop per unit length for R-134a is greater than that for R-12 since specific volume of R-134a is larger that of R-12 and vapor pressure of R-134a is greater than that of R-12. Flash point of R-134a is ahead of that of R-12.

  • PDF

Performance Comparison of Fin-Tube Type Evaporator using R134a and R1234yf under the Frost Condition (착상조건에서 R134a와 R1234yf를 적용한 핀-관 형태의 증발기 성능 비교)

  • Shin, Yunchan;Kim, Jinhyun;Cho, Honghuyn
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.5795-5801
    • /
    • 2015
  • The low temperature distribution of the refrigerated and frozen food has been increased gradually. Refrigeration industry is using R134a refrigerant, which GWP is 1300. R1234yf is an alternative refrigerant of R134a because GWP of R1234yf refrigerant is just 4. Evaporator used in refrigeration truck refrigeration system is operated on low temperature condition. Accordingly, evaporator is formed frost and the formation of frost is rapidly decreased performance of evaporator. In this study, the performance of evaporator using R134a and R1234yf refrigerant was analyzed with operating conditions under frost condition. As a result, the performance of R134a evaporator according to air inlet temperature, relative humidity and evaporating temperature was more sensitive than R1234yf evaporator. Besides, the frost growth of R134a evaporator is steeper than that of R1234yf one.

Comparison of Condenser Characteristics using R134a and R22 under the Same Inlet Temperature Condition (동일한 유입온도조건에서 R134a와 R22 적용 응축기의 특성비교)

  • Kang, Shin-Hyung;Byun, Ju-Suk;Kim, Chang-Duk
    • Journal of Energy Engineering
    • /
    • v.15 no.3 s.47
    • /
    • pp.166-173
    • /
    • 2006
  • R134a is considered as an alternative refrigerant to R22 for air conditioners. An experimental investigation was made to study the characteristics of the heat transfer and pressure drop for R134a flowing in a fin-and-tube heat exchanger used for commercial air-conditioning units. Experiments were carried out under the conditions of inlet refrigerant temperature of $60^{\circ}C$ and refrigerant mass fluxes of $150,\;200,\;and\;250\;kg/m^{2}s$. The inlet air has dry bulb temperature or $35^{\circ}C$, relative humidity of 40% and air velocity varying from 0.68 to 1.6 m/s. Experiments show that air velocity decreased by 5.9% is needed for R134a than that of R22 while pressure drop for R134a was $18.1{\sim}20.4%$ higher than that of R22 for the degree of subcooling $5^{\circ}C$. The results are useful in designing more compact and effective condensers for various refrigeration and air conditioning systems using refrigerant R134a.

Performance Characteristics of R134a Supercritical Heat Pump (R134a 냉매용 초임계 히트펌프의 성능 특성)

  • Choi, In-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.4
    • /
    • pp.60-65
    • /
    • 2014
  • In this paper, cycle performance analysis for heating capacity, compression work and COP of R134a supercritical heat pump is presented to offer the basic design data for the operating parameters of the system. The operating parameters considered in this study include superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature in the R134a supercritical heat pump system. The main results were summarized as follows : Superheating degree, pressure and outlet temperature of gas cooler, compressor efficiency and evaporating temperature of R134a heat pump system have an effect on the heating capacity, compression work and COP of this system. With a thorough grasp of these effect, it is necessary to design the supercritical heat pump using R134a. The prediction for COP of R134a supercritical heat pump have been proposed through multiple regression analysis.

The Effect of R-12 and R-134a Refrigerant on the Performance of Refrigeration Equipment for R-12 Refrigerant (R-12 냉매용 냉동장치의 성능에 미치는 R-12와 R-134a 냉매의 효과)

  • Lee, Hong-Gee;Jang, Dong-Ho;Jung, Yong-Jin;Kang, Hyung-Suk
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.15-20
    • /
    • 2000
  • High pressure, pressure ratio, refrigerating effect, heat transfer from the condenser and the power of the compressor etc. of a self-made refrigeration equipment for R-12 are investigated when R-12 and R-134a are used as the coolants. The comparison between the performance for R-12 and that for R-134a is made. As a result, R-134a is better than R-12 in the view of high pressure, refrigerating effect and the coefficient of performance and vice versa in the view of pressure ratio, exit gas temperature from the compressor and heat transfer from the condenser.

  • PDF