• Title/Summary/Keyword: R-curve behavior

Search Result 157, Processing Time 0.033 seconds

R-Curve Behavior in a Gas-Pressure Sintered Silicon Nitride (가스압 소결된 질화규소의 R-Curve 거동)

  • 김상섭;김성진;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.12
    • /
    • pp.949-955
    • /
    • 1992
  • R-curves, fracture resistance (KR) as a function of crack extension (Δa), of a gas-pressure sintered monolithic Si3N4 were determined by controlled flaw/strength technique. Rising R-curve behavior was observed, confirming the operation of microstructural toughening process during crack growth. The R-curve parameters, k and m in the equation, KR=k(Δa)m, were determined to 30.301 and 0.1146, respectively. Microstructural observation of growing crack revealed that the bridging in the crack wake by unbroken ligament of large elongated ${\beta}$-grains was the mechanism primarily for the rising R-curve behavior.

  • PDF

R-Curve Behavior of Silicon Nitride at Elevated Temperatures

  • Sakaguchi, Shuji
    • The Korean Journal of Ceramics
    • /
    • v.4 no.4
    • /
    • pp.331-335
    • /
    • 1998
  • R-curve, of three kinds of silicon nitride-based ceramics were measured, using single edge notched beam (SENB) method at room and at elevated temperatures, up to $1200^{\circ}C$. Stable fraacture was seen on ceramic materials with SENB specimens if the machined notch is deep enough, even though the crack resistance did not increase with crack length. Hot pressed silicon nitride did not show the rising R-curve behavior at room temperature, but it showed some rising at $1000^{\circ}C$ and above. Si3N4 reinforced with SiC whiskers showed no rising behavior at room and elevated temperatures, as it has smaller grain size, compare to the monolithic specimen. Gas pressure sintered silicon nitride had very large and elongated grains, and it showed rising R-curve even at room temperature. However, it showed some creep behavior at $1200^{\circ}C$ and the calculated R-curve on this condition did not show a good result. We cannot apply this technique on this condition for obtaining the R-curve.

  • PDF

R-curve, erosion and wear of silicon carbide ceramics (탄화규소의 R-curve, 침식 및 마모 특성)

  • 채준혁;조성재;김석삼
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.139-145
    • /
    • 1998
  • This paper addresses the R-curve properties, wear resistance, and erosion resistance of the two silicon carbide ceramics with different microstructures, i.e. , fine grained SiC and in situ-toughened SiC(IST SIC). Fine grained SiC exhibits a relatively flat R-curve behavior whereas the IST SiC exhibits a increasing R-curve behavior. The increasing R-curve behavior in IST SiC is attributed to relatively weak grain boundaries. The rate of material removal during wear tests and erosion tests was higher for IST SiC than that for fine grained SiC. This is attributed to the weaker grain boundaries in IST SiC than that in fine grained SiC. It is implied that fracture toughness in short crack regime should be taken into consideration in the interpretation of the microscopical material removal process. We show that the higher the strength of grain boundaries is, the higher wear and erosion resistances are.

  • PDF

Determination of K-R Curve for Steel Structure Hot-Rolled Thin Plates (일반구조용강 열간압연 박판에 대한 K-R 곡선 결정)

  • Lee, Eok-Seop;Lee, Gye-Seung;Baek, Jun-Ho;Pyeon, Jang-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.9
    • /
    • pp.98-105
    • /
    • 2002
  • Some materials exhibit a rising K-R curve, while the K-R curve for other materials is flat. The shape of the K-R curve depends on material behavior and, to a lesser extent, on the configuration of the cracked structure. The K-R curve for an ideally brittle material is flat because the surface energy is an invariant material property. However, the K-R curve can take on a variety of shapes when nonlinear material behavior accompanies fracture. Five different hot-rolled thin plates are tested to investigate K-R curve behavior. A special experimental apparatus is used to prevent specimens from buckling.

Comparison with R Curve Behavior fer the K and J Parameter of structural Steel Hot-Rolled Thin Plates (일반구조용강 열간압연 박판의 K와 J 파라미터에 대한 R곡선 거동의 비교)

  • 이계승;이억섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.812-815
    • /
    • 2002
  • The shape of K-R curve for an ideally brittle material is flat because the surface energy is an unvaried material property. However, the K-R curve can take on a variety of shapes when nonlinear material behavior accompanies fracture. By the way, a general metallic material is nonlinear, structural steel is such. Therefore, the J-R curve form J-integral value instead of K parameters can be used to evaluate elastic-plastic materials with flaws in terms of ductile fracture that can be significant to design. In this paper, R-curve behaviors form K and J parameter is considered for the precise assessment of fracture analysis, in case of JS-SS400 steels.

  • PDF

R-Curve Behavior of Particulate Composites of ${Al_2}{O_3}$ Containing SiC and $ZrO_2$: I. Experiment (SiC와 $ZrO_2$를 함유하는 ${Al_2}{O_3}$ 입자복합체의 균열저항거동 : I. 실험)

  • 박관수;이승환;이재형
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.4
    • /
    • pp.359-367
    • /
    • 2000
  • Particulate composites of Al2O3/SiC, Al2O3/ZrO2 and Al2O3/ZrO2/SiC have been fabricated to investigate their R-curve behaviors and toughening mechanisms. Al2O3 containing 30 vol% SiC particles of 3${\mu}{\textrm}{m}$ showed rising R-curve behavior owing to the strong crack bridging by SiC particles. The fracture toughness reached 9.1 MPa {{{{ SQRT {m} }} at the crack length of 1000${\mu}{\textrm}{m}$. On the other hand, ZrO2-toughened Al2O3 had a high flat R-curve since it rose steeply in the short crack region due to the well known transformation toughening. For Al2O3/ZrO2/SiC composites, the R-curve behavior was similar to that of Al2O3/SiC but with slightly higher toughness. The SiC particles in this composite decreased the amount of transformable tetragonal phase to reduce the effect of transformation toughening by 50%. It was also found that the fracture toughness of this composite with two different toughening mechanisms was markedly lower than that estimated by the simple addition of two contributions.

  • PDF

In Situ Observation of Slow Crack Growth in a Whisker-Reinforced Alumina Matrix Composite (SiC 휘스커 보강 알루미나 복합재료에서 Slow Crack Growth 현상의 직접관찰 연구)

  • 손기선;김우상;이성학
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.2
    • /
    • pp.203-213
    • /
    • 1996
  • In this study the subcritical crack growth behavior in an Al2O3-SiCw composite has been investigated using in situ fracture technique of applied moment double cantilever beam (AMDCB) specimens indside an SEM. This technique allows the detailed observation of whisker and grain bridging in the crack wake region. The experimental results indicated that the KI-a curve was deviated from the conventional powder law form and that the existed a region where the rate of microcrack growth was decreased with increasing the externally applied stress intensity factor. This behavior could be explained by arising crack growth resistance i.e. R-curve behavior which was associated with crack shielding due to whisker and grain bridging. The R-curve was also analyzed from the KI-a curve data in order to quantify the bridging effect in the Al2O3-SiCw composite.

  • PDF

Evaluation of R-curve Behavior Analysis and Machinability of $Si_3N_4-hBN$ Machinable Ceramics ($Si_3N_4-hBN$ 머시너블 세라믹의 R-curve 거동분석과 가공성 평가)

  • 장성민;조명우;조원승;이재형
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • Generally, ceramics are very difficult-to-cut materials because of its high strength and hardness. The machining process of ceramics can be characterized by cracking and brittle fracture. In the machining of ceramics, edge chipping and crack propagation are the principal reasons to cause surface integrity deterioration. Such phenomenon can cause not only poor dimensional and geometric accuracy, but also possible failure of the ceramic parts. Ceramics can be machined with traditional method such as grinding and polishing. However, such processes are generally cost-expensive and have low material removal rate. Thus, in this paper, to overcome these problems. BN powder, which gives good cutting property, is added for the fabrication of machinable ceramics by volume of 5,10,15,20,25 and 30%. And, mechanical properties, R-curve behavior and machining tests are carried out to evaluate the machining properties of the manufactured machinable ceramics.

Analysis of Bridging Stress Effect of Polycrystalline aluminas Using Double Cantilever Beam Method (Double Cantilever Beam 방법을 이용한 다결정 알루미나의 Bridging 응력효과 해석)

  • 손기선;이선학;백성기
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.583-589
    • /
    • 1996
  • In this study a new analytical model which can describe the relationship between the bridging stress and microstructure has beenproposed in order to investigate the microstructural effect on the R-curve behavior in polycrystalline aluminas since the R-curve can be derived via the bridging stress function. In the currently developed model function the distribution of grain size is considered as a microstructural factor in modeling of bridging stress function and thus the bridging stress function including three constants PM, n, and Cx, can be established analytically and quantitatively. The results indicate that the n value is closely related to the grain size distribution thereby providing a reliability of the current model for the bridging stress analysis. Thus this model which explains the correlation of the bridging stress distribution and microstructual parame-ters is useful for the systematic interpretation of microfracture mechanism including the R-curve behavior in polycrystalline aluminas.

  • PDF