• Title/Summary/Keyword: R290

Search Result 361, Processing Time 0.021 seconds

Soft ice-cream maker using R290/R32, R290/DME (R290/R32, R290/DME 적용 소프트 아이스크림 제조기)

  • Park, T.K.;Han, S.P.;Ham, J.H.;Kim, N.H.;Park, H.C.
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.64-67
    • /
    • 2006
  • Drop-in tests were conducted using R290/R32 (31:69) or R290/DME (65:35) mixture in a ice-cream maker for possible replacement of R-502 and R-404A. At the standard room temperature ($20^{\circ}C$), the time required for initial ice-cream making was 4'7' for R290/32, 4'39' for R404A and 4'59' for R290/DME. The electric energy consumed was 436 kJ for R290/32, 425 kJ for R404A and 439 kJ for R290/DME. The mass flow rate as well as the temperature and pressure data are also provided.

  • PDF

Evaporating Heat Transfer Characteristics of R-290, R-600a Inside Horizontal Double Pipe Heat Exchangers (R-290, R-600a의 수평 이중관형 열교환기내 증발 특성)

  • 홍진우;노건상;권옥배;박기원;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.3
    • /
    • pp.309-314
    • /
    • 2000
  • Experimental results for heat transfer characteristics of natural refrigerants R-290, R-600a and HCFC refrigerant R-22 during evaporating inside horizontal double pipe heat exchangers are presented. The experimental apparatus is basically a vapour heat pump system, composed of a compressor, a condenser, expansion devices, a evaporator, and some other peripheral devices. The test sections were horizontal double pipe heat exchangers, which were a pair of smoothed tube, having 10.07 mm ID, 12.07 mm OD, and grooved inner fin tube, having 12.70 mm OD, 0.25 mm fin height, and 75 fins. The local evaporating heat transfer coefficients of natural refrigerants were not much affected with the mass velocity than R-22 and it could be interpreted that the local evaporating heat transfer coefficients of R-22 were increased more than those of R-290, R-600a according to the increment of mass velocity. Moreover, the maximum increment of the heat transfer coefficient was found in R-290. The average heat transfer coefficient was obtained the maximum value in R-290 and the minimum value in R-22. It reveals that the natural refrigerant can be used as a substitute for R-22. In the grooved inner fin tube, 70% of the increment of the heat transfer coefficient was obtained compared to the smoothed tube.

  • PDF

Performance of HCFC22 Alternatives R1270, R290, R1270/R290, R290/HFC152a, R1270/R290/RE170 Refrigerants for Air-conditioning and Heat Pump Applications (HCFC22 대체 R290, R1270 및 R1270/R290, R290/HFC152a, R1270/R290/RE170 혼합냉매의 공기조화기와 열펌프 작동범위에서의 성능 평가)

  • Hwang Ji-Hwan;Baek In-Cheol;Jung Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.312-319
    • /
    • 2006
  • In this study, performance of 2 pure hydrocarbons and 7 mixtures was measured in an attempt to substitute HCFC22 used in air-conditioners and heat pumps. The mixtures were composed of R1270 (propylene), R290 (propane), HFC152a, and RE170 (Dimethyl ether, DME). The pure and mixed refrigerants tested have GWPs of $3{\sim}58$ as compared to that of $CO_2$ and the mixtures are all near-azeotropic showing the gliding temperature difference (GTD) of less than $0.6^{\circ}C$. Thermodynamic cycle analysis was carried out to determine the optimum compositions and actual tests were performed in a laboratory heat pump test bench at the evaporation and condensation temperatures of 7.5 and $45.1^{\circ}C$ respectively. Test results show that the coefficient of performance (COP) of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed 11.5% reduction in capacity, most of the fluids tested had the similar capacity to that of HCFC22. Compressor discharge temperatures were reduced by $11{\sim}17^{\circ}C$ with these fluids. There was no problem with mineral oil since the mixtures were mainly composed of hydrocarbons. The amount of charge was reduced up to 55% as compared to HCFC22. Overall, these fluids provide good performance with reasonable energy savings without any environmental problem and thus can be used as long term alternatives for. residential air-conditioning and heat pumping application.

Performance of Heat Pumps Charged with R170/R290 Mixture (R170/R290 혼합냉매 적용 히트펌프 성능 평가)

  • Park, Ki-Jung;Lee, Cheol-Hee;Jung, Dong-Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.9
    • /
    • pp.590-598
    • /
    • 2008
  • In this study, performance of R170/R290 mixtures is measured on a heat pump bench tester in an attempt to substitute R22. The bench tester is equipped with a commercial hermetic rotary compressor providing a nominal capacity of 3.5kW. All tests are conducted under the summer cooling and winter heating conditions of $7/45^{\circ}C$ and $-7/41^{\circ}C$ in the evaporator and condenser respectively. During the tests, the composition of R170 is varied from 0 to 10% with an interval of 2%. Test results show that the coefficient of performance (COP) and capacity of R290 are up to 15.4% higher and 7.5% lower than those of R22 for both conditions respectively. For R170/R290 mixture, the COP decreases and the capacity increases with an increase in the amount of R170. The mixture of 4%R170/96%R290 shows the similar capacity and COP as those of R22. For the mixture, the compressor discharge temperature is $16{\sim}30^{\circ}C$ lower than that of R22. There is no problem with mineral oil since the mixture is mainly composed of hydrocarbons. The amount of charge is reduced up to 58% as compared to R22. Overall, R170/R290 mixture is a good long term 'drop-in' candidate to replace R22 in residential air-conditioners and heat pumps.

Experimentation and modeling on the flow of R407c and R290 through capillary tubes (R407C 및 R290 냉매에 대한 모세관내 유동특성 실험 및 모델링)

  • 김용찬;조일용;최종민
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.4
    • /
    • pp.492-498
    • /
    • 1999
  • Mass flow rates of R407C and R290 through capillary tubes were measured with various capillary tube geometries and flow conditions. For all refrigerants tested in the present study, mass flow rate through the capillary tube was strongly dependent on the condensing pressure, subcooling and capillary length and diameter. The flow rate of R407C was 5~10[%] higher than that of R22 at the same condensing temperature and degree of subcooling, while flow rate for R290 was 40[%] lower than that for R22. Based on experimental results, an empirical correlation was developed using Pi theorem to predict the mass flow rate through capillary tubes. The predicted flow rates using the model were consistent with the experimental data within ${\pm}$10[%].

  • PDF

Evaporation kent transfer characteristics of R-290 and R-600a in the horizontal tubes (수평관내 R-290과 R-600a의 증발 열전달 특성)

  • Son, Chang-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.264-269
    • /
    • 2008
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC(e.g. R290 and R600a), R-22 as a HCFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07 mm and 6.54 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4\;kg/m^2s$ and cooling capacity of $0.95{\sim}10.1\;kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of R-290 and R-600a was higher value than that of R-22. In comparison with R-22, the evaporation heat transfer coefficient of R-290 and 600a is approximately $56.7{\sim}70.1$ and $46.6{\sim}59.7%$ higher, respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well matched with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Condensation heat transfer characteristics of hydrocarbon refrigerants R-290 and R-600a inside horizontal tubes (탄화수소계 냉매 R-290, R-600a의 수평관내 응축 열전달 특성에 관한 연구)

  • 박승준;박기원;노건상;정재천;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.1
    • /
    • pp.20-25
    • /
    • 2000
  • An experimental study on the condensation heat transfer coefficients of R-22, R-290 and R-600a inside horizontal tube was performed. Heat transfer measurements were performed for smooth tube with inside diameter of 10.07 mm and outside diameter of 12.07 mm and inner grooved tube having 75 fins whose height is 0.25 mm. This study was performed for condensation temperatures were from 308 K to 323 K, and mass velocity of $51 kg/m^2s - 250kg/m^2s$. The test results showed that the local condensation heat transfer coefficients increased as the mass flux increased, and also the effect of mass flow rate on heat transfer coefficients of R-290 was less than R-22. In addition, heat transfer coefficient of R-22 increased to a larger extent than R-290 and R-600a as the mass flow rate increased. Average condensation heat transfer coefficients of natural refrigerants were superior to that of R-22. The present results had a good agreement with Cavallini-Zecchin's correlation for smooth and inner grooved tubes.

  • PDF

Evaporation Heat Transfer Characteristics of Hydrocarbon Refrigerants R-290 and R-600a in the Horizontal Tubes

  • Roh, Geon-Sang;Son, Chang-Hyo;Oh, Hoo-Kyu
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.74-83
    • /
    • 2007
  • This paper presents the experimental results of evaporation heat transfer coefficients of HC refrigerants (e.g. R290 and R600a). R-22 as a HCFCs refrigerant and R-l34a as a HFCs refrigerant in horizontal double pipe heat exchangers, having four different inner diameters of 10.07, 7.73, 6.54 and 5.80 mm respectively. The experiments of the evaporation process were conducted at mass flux of $35.5{\sim}210.4 kg/m^2s$ and cooling capacity of $0.95{\sim}10.1 kW$. The main results were summarized as follows : The average evaporation heat transfer coefficient of hydrocarbon refrigerants(R-290 and R-600a) was higher than the refrigerants, R-22 and R-l34a. In comparison with R-22 the evaporation heat transfer coefficient of R-l34a is approximately $-11{\sim}8.1 %$ higher. R-290 is $56.7{\sim}70.1 %$ higher and R-600a is $46.9{\sim}59.7 %$ higher. respectively. In comparison with experimental data and some correlations, the evaporation heat transfer coefficients are well predicted with the Kandlikar's correlation regardless of a type of refrigerants and tube diameters.

Study on Heat Transfer Characteristics of Evaporator with Horizontal Small Diameter Tubes using Natural Refrigerant Propane (자연냉매 프로판을 이용한 수평세관 증발기의 열전달 특성에 관한 연구)

  • Ku, H.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.4
    • /
    • pp.11-16
    • /
    • 2010
  • The evaporation heat transfer characteristics of propane(R-290) in horizontal small diameter tubes were investigated experimentally. The test tubes have inner diameters of 1 mm and 4 mm. Local heat transfer coefficients were measured at heat fluxes of 12, $24\;kW/m^2$, mass fluxes of 150, $300\;kg/m^2s$, and evaporation temperature of $15^{\circ}C$. The experimental results showed that the evaporation heat transfer coefficient of R-290 has an effect on heat flux, mass flux, tube diameter, and vapor quality. The evaporation heat transfer of R-290 has an influenced on nucleate boiling at low quality and convective boiling at high quality. The evaporation heat transfer coefficient of R-290 increases with decreasing inner tube diameter. And the evaporation heat transfer coefficient of R-290 is about 1~3 times higher than that of R-134a.

A Study on the Performance Characteristics of the Soft Ice Cream Machine Run by Refrigerant Mixture (R-290/R-32) (혼합냉매(R-290/R-32)를 사용하는 소프트 아이스크림 제조기의 성능 특성에 관한 연구)

  • Kim, Nea-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.719-725
    • /
    • 2017
  • Frozen milk products are commonly made in small refrigeration machines. R-502 has long been used as a refrigerant for soft ice cream machines, but it is being replaced with R-404A due to the issue of ozone layer depletion. However, R-404A has high global warming potential, so it also needs to be replaced. In this study, a mixture of R-290 and R-32 was considered as a new refrigerant. An optimization and performance evaluation of the mixture were conducted for a freezer volume of 2.8 liters. The focus of the optimization was the appropriate refrigerant charge and the opening of the expansion valve. At the optimized conditions, ice cream was produced in 6 minutes and 24 seconds with the mixture, and the COP was 0.83. For R-404A, the ice cream production time was 6 minutes and 22 seconds, and the COP was 0.90. The results may be used for the design of food refrigeration machines and to optimize other refrigeration cycles.