• Title/Summary/Keyword: RAD51

Search Result 58, Processing Time 0.031 seconds

Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells

  • Choi, Eui-Hwan;Yoon, Seobin;Hahn, Yoonsoo;Kim, Keun P.
    • Molecules and Cells
    • /
    • v.40 no.2
    • /
    • pp.143-150
    • /
    • 2017
  • Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

High expression of RAD51 promotes DNA damage repair and survival in KRAS-mutant lung cancer cells

  • Hu, Jinfang;Zhang, Zhiguo;Zhao, Lei;Li, Li;Zuo, Wei;Han, Lei
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.151-156
    • /
    • 2019
  • RAD51 recombinase plays a critical role in homologous recombination and DNA damage repair. Here we showed that expression of RAD51 is frequently upregulated in lung cancer tumors compared with normal tissues and is associated with poor survival (hazard ratio (HR) = 2, P = 0.0009). Systematic investigation of lung cancer cell lines revealed higher expression of RAD51 in KRAS mutant (MT) cells compared to wildtype (WT) cells. We further showed that MT KRAS, but not WT KRAS, played a critical role in RAD51 overexpression via MYC. Moreover, our results revealed that KRAS MT cells are highly dependent on RAD51 for survival and depletion of RAD51 resulted in enhanced DNA double strand breaks, defective colony formation and cell death. Together, our results suggest that mutant KRAS promotes RAD51 expression to enhance DNA damage repair and lung cancer cell survival, suggesting that RAD51 may be an effective therapeutic target to overcome chemo/radioresistance in KRAS mutant cancers.

Elevated expression of exogenous RAD51 enhances the CRISPR/Cas9-mediated genome editing efficiency

  • Seo Jung Park;Seobin Yoon;Eui-Hwan Choi;Hana Hyeon;Kangseok Lee;Keun Pil Kim
    • BMB Reports
    • /
    • v.56 no.2
    • /
    • pp.102-107
    • /
    • 2023
  • Genome editing using CRISPR-associated technology is widely used to modify the genomes rapidly and efficiently on specific DNA double-strand breaks (DSBs) induced by Cas9 endonuclease. However, despite swift advance in Cas9 engineering, structural basis of Cas9-recognition and cleavage complex remains unclear. Proper assembly of this complex correlates to effective Cas9 activity, leading to high efficacy of genome editing events. Here, we develop a CRISPR/Cas9-RAD51 plasmid constitutively expressing RAD51, which can bind to single-stranded DNA for DSB repair. We show that the efficiency of CRISPR-mediated genome editing can be significantly improved by expressing RAD51, responsible for DSB repair via homologous recombination (HR), in both gene knock-out and knock-in processes. In cells with CRISPR/Cas9-RAD51 plasmid, expression of the target genes (cohesin SMC3 and GAPDH) was reduced by more than 1.9-fold compared to the CRISPR/Cas9 plasmid for knock-out of genes. Furthermore, CRISPR/Cas9-RAD51 enhanced the knock-in efficiency of DsRed donor DNA. Thus, the CRISPR/Cas9-RAD51 system is useful for applications requiring precise and efficient genome edits not accessible to HR-deficient cell genome editing and for developing CRISPR/Cas9-mediated knockout technology.

Rad51 Regulates Reprogramming Efficiency through DNA Repair Pathway

  • Lee, Jae-Young;Kim, Dae-Kwan;Ko, Jeong-Jae;Kim, Keun Pil;Park, Kyung-Soon
    • Development and Reproduction
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2016
  • Rad51 is a key component of homologous recombination (HR) to repair DNA double-strand breaks and it forms Rad51 recombinase filaments of broken single-stranded DNA to promote HR. In addition to its role in DNA repair and cell cycle progression, Rad51 contributes to the reprogramming process during the generation of induced pluripotent stem cells. In light of this, we performed reprogramming experiments to examine the effect of co-expression of Rad51 and four reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, on the reprogramming efficiency. Co-expression of Rad51 significantly increased the numbers of alkaline phosphatase-positive colonies and embryonic stem cell-like colonies during the process of reprogramming. Co-expression ofRad51 significantly increased the expression of epithelial markers at an early stage of reprogramming compared with control cells. Phosphorylated histone H2AX (${\gamma}H2AX$), which initiates the DNA double-strand break repair system, was highly accumulated in reprogramming intermediates upon co-expression of Rad51. This study identified a novel role of Rad51 in enhancing the reprogramming efficiency, possibly by facilitating mesenchymal-to-epithelial transition and by regulating a DNA damage repair pathway during the early phase of the reprogramming process.

DNA recombinase Rad51 is regulated with UV-induced DNA damage and the DNA mismatch repair inhibitor CdCl2 in HC11 cells

  • You, Hyeong-Ju;Kim, Ga-Yeon;Kim, Seung-Yeon;Kang, Man-Jong
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.121-128
    • /
    • 2021
  • Increasing the efficiency of HR (homologous recombination) is important for a successful knock-in. Rad51 is mainly involved in homologous recombination and is associated with strand invasion. The HR-related mismatch repair system maintains HR fidelity by heteroduplex rejection and repair. Therefore, the purpose of this study is to control Rad51, which plays a critical role in HR, through UV-induced DNA damage. It is also to confirm the effect on the expression of MMR related genes (Msh2, Msh3, Msh6, Mlh1, Pms2) and HR-related genes closely related to HR through treatment with the MMR inhibitor CdCl2. The mRNA expression of Rad51 gene was confirmed in both HC11 cells and mouse testes, but the mRNA expression of Dmc1 gene was confirmed only in mouse testes. The protein expression of Rad51 and Dmc1 gene increased in UV-irradiated HC11 cells. After 72 hours of treatment with 1 ㎛ of CdCl2, the mRNA expression level of Msh3, Pms2, and Rad51 decreased, but the mRNA expression level of Msh6 and Mlh1 increased in HC11 cells. There was no significant difference in Msh2 mRNA expression between CdCl2 untreated-group and the 72 hours treated group. In conclusion, HR-related gene (Rad51) was increased by UV-induced DNA damage. Treatment of the MMR inhibitor CdCl2 in HC11 cells decreased the mRNA expression of Rad51.

Effects of Rad51 on Survival of A549 Cells

  • Yu, Sha-Sha;Tu, Yi;Xu, Lin-Lin;Tao, Xue-Qin;Xu, Shan;Wang, Shan-Shan;Xiong, Yi-Feng;Mei, Jin-Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.1
    • /
    • pp.175-179
    • /
    • 2015
  • Rad51, a key factor in the homologous recombination pathway for the DNA double-strand break repair, plays a vital role in genesis of non-small-cell lung cancer (NSCLC). In recent years, more and more studies indicate that high expression of Rad51 is of great relevance to resistance of NSCLC to chemotherapeutic agents and ionizing radiation. However, the underlying molecular mechanisms are poorly understood. In this study, we investigated the role of single Rad51 on cell viability in vitro. Our results show that depletion of endogenous Rad51 is sufficient to inhibit the growth of the A549 lung cancer cell line, by accumulating cells in G1 phase and inducing cell death. We conclude that independent Rad51 expression is critical to the survival of A549 cells and can be an independent prognostic factor in NSCLC patients.

UVSC of Aspergillus nidulans is a Functional Homolog of RAD51 in Yeast

  • Yoon, Jin-Ho;Seong, Kye-Yong;Chae, Suhn-Kee;Kang, Hyen-Sam
    • BMB Reports
    • /
    • v.34 no.5
    • /
    • pp.428-433
    • /
    • 2001
  • A defect in uvsC of Aspergillus nidulans caused high methyl methansulfonate (MMS)-sensitivity, hyporecombination, and a lack of UV induced mutation. The uvsC gene of Aspergillus nidulans shares a sequence similarity with the RAD51 gene of Saccharomyces cerevisiae. In this study, in vitro and in vivo tests were conducted in order to determine whether or not the UVSC protein had functional similarities to RAD51, the recombination enzyme in yeast. The purified recombinant UVSC protein, following expression in Escherichia coli, showed binding activity to single-stranded DNA (ssDNA), when both ATP and magnesium are present. In addition, ATPase activity was also demonstrated and its activity was stimulated in the presence of ssDNA. The UVSC protein that was expressed under the ADH promoter in S. cerevisiae suppressed in part the sensitivity to MMS of the rad51 null mutant. Similarly, when the uvsC cDNA was expressed from the nmt promoter, the MMS sensitivity of the rhp51 null mutant of Schizosaccharomyces pombe was partially complemented. These results indicate that the A. nidulans UVSC protein is a functional homologue of the RAD51 protein.

  • PDF

ON ω-LOCAL MODULES AND Rad-SUPPLEMENTED MODULES

  • Buyukasik, Engin;Tribak, Rachid
    • Journal of the Korean Mathematical Society
    • /
    • v.51 no.5
    • /
    • pp.971-985
    • /
    • 2014
  • All modules considered in this note are over associative commutative rings with an identity element. We show that a ${\omega}$-local module M is Rad-supplemented if and only if M/P(M) is a local module, where P(M) is the sum of all radical submodules of M. We prove that ${\omega}$-local nonsmall submodules of a cyclic Rad-supplemented module are again Rad-supplemented. It is shown that commutative Noetherian rings over which every w-local Rad-supplemented module is supplemented are Artinian. We also prove that if a finitely generated Rad-supplemented module is cyclic or multiplication, then it is amply Rad-supplemented. We conclude the paper with a characterization of finitely generated amply Rad-supplemented left modules over any ring (not necessarily commutative).

Relationship between DNA mismatch repair and CRISPR/Cas9-mediated knock-in in the bovine β-casein gene locus

  • Kim, Seung-Yeon;Kim, Ga-Yeon;You, Hyeong-Ju;Kang, Man-Jong
    • Animal Bioscience
    • /
    • v.35 no.1
    • /
    • pp.126-137
    • /
    • 2022
  • Objective: Efficient gene editing technology is critical for successful knock-in in domestic animals. RAD51 recombinase (RAD51) gene plays an important role in strand invasion during homologous recombination (HR) in mammals, and is regulated by checkpoint kinase 1 (CHK1) and CHK2 genes, which are upstream elements of RAD51 recombinase (RAD51). In addition, mismatch repair (MMR) system is inextricably linked to HR-related pathways and regulates HR via heteroduplex rejection. Thus, the aim of this study was to investigate whether clustered regularly interspaced short palindromic repeats/CRISPR-associated 9 (CRISPR/Cas9)-mediated knock-in efficiency of human lactoferrin (hLF) knock-in vector in the bovine β-casein gene locus can be increased by suppressing DNA MMR-related genes (MSH2, MSH3, MSH6, MLH1, and PMS2) and overexpressing DNA double-strand break (DSB) repair-related genes (RAD51, CHK1, CHK2). Methods: Bovine mammary epithelial (MAC-T) cells were transfected with a knock-in vector, RAD51, CHK1, or CHK2 overexpression vector and CRISPR/sgRNA expression vector to target the bovine β-casein gene locus, followed by treatment of the cells with CdCl2 for 24 hours. After 3 days of CdCl2 treatment, the knock-in efficiency was confirmed by polymerase chain reaction (PCR). The mRNA expression levels of DNA MMR-related and DNA DSB repair-related genes were assessed by quantitative real-time PCR (RT-qPCR). Results: Treatment with CdCl2 decreased the mRNA expression of RAD51 and MMRrelated genes but did not increase the knock-in efficiency in MAC-T cells. Also, the overexpression of DNA DSB repair-related genes in MAC-T cells did not significantly affect the mRNA expression of MMR-related genes and failed to increase the knock-in efficiency. Conclusion: Treatment with CdCl2 inhibited the mRNA levels of RAD51 and DNA MMR-related genes in MAC-T cells. However, the function of MMR pathway in relation to HR may differ in various cell types or species.

Histone deacetylases inhibitor and RAD51 recombinase increase transcription activator-like effector nucleases-mediated homologous recombination on the bovine β-casein gene locus

  • Park, Da Som;Kim, Se Eun;Koo, Deog-Bon;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.6
    • /
    • pp.1023-1033
    • /
    • 2020
  • Objective: The efficiency of the knock-in process is very important to successful gene editing in domestic animals. Recently, it was reported that transient loosening of the nucleosomal folding of transcriptionally inactive chromatin might have the potential to enhance homologous recombination efficiency. The objective of this study was to determine whether histone deacetylases (HDAC) inhibitor and RAD51 recombinase (RAD51) expression were associated with increased knock-in efficiency on the β-casein (bCSN2) gene locus in mammary alveolar-large T antigen (MAC-T) cells using the transcription activator-like effector nucleases (TALEN) system. Methods: MAC-T cells were treated with HDAC inhibitors, valproic acid, trichostatin A, or sodium butyrate for 24 h, then transfected with a knock-in vector, RAD51 expression vector and TALEN to target the bCSN2 gene. After 3 days of transfection, the knock-in efficiency was confirmed by polymerase chain reaction and DNA sequencing of the target site. Results: The level of HDAC 2 protein in MAC-T cells was decreased by treatment with HDAC inhibitors. The knock-in efficiency in MAC-T cells treated with HDAC inhibitors was higher than in cells not treated with inhibitors. However, the length of the homologous arm of the knock-in vector made no difference in the knock-in efficiency. Furthermore, DNA sequencing confirmed that the precision of the knock-in was more efficient in MAC-T cells treated with sodium butyrate. Conclusion: These results indicate that chromatin modification by HDAC inhibition and RAD51 expression enhanced the homologous recombination efficiency on the bCSN2 gene locus in MAC-T cells.