• Title/Summary/Keyword: RANS equation

Search Result 126, Processing Time 0.026 seconds

Numerical Analysis of Wind Turbine of Drag Force Type with change of Blade Number and Pitch Angle (수직항력식 터빈을 이용한 풍력발전 시스템의 형상 변화 및 피치각 변화에 관한 유동해석)

  • Park C.;Park G. S.;Park W. G.;Yoon S. H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.61-64
    • /
    • 2004
  • To analyze the performance of Wind turbine of the drag force type, 3-D RANS equations were solved by the iterative time marching method on sliding multiblock grid system. The numerical flow simulations by changing blade number and pitch angle were carried out : blade number = 15, 20 circumferentially; pitch angle = $30^{\circ},\; 50^{\circ}$ radially. The torque coefficient was also calculated.

  • PDF

Numerical Simulation of 2-D Wing-In-Ground Effect (2차원 해면효과의 수치계산)

  • Yang Chen-Jun;Shin Myung-Soo
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.90-98
    • /
    • 1998
  • 본 논문은 2차원 해면효과의 수치계산 결과를 정리하였다. 지면으로부터의 높이변화에 따른 점성유동장을 계산하기 위하여 지배방정식으로는 비압축성 RANS방정식을, 시간에 대하여 서는 음해법으로 프로그램을 구성하였다. 압력항은 가상압축성을 도입 4차 수치확산항을 추가하는 것에 의해 계산하였으며, 높은 레이놀즈수에서의 효과적인 계산을 위해 Baldwin-Lomax 난류 모델을 도입하였다. 해면효과가 없는 무한유중에서의 NACA-0012단면 계산결과를 실험데이터와 비교하는 것에 의해 프로그램의 타당성을 확인하였다. NACA-6409와 두께비 $4.6\%$의 날개에 대하여 해면효과를 고려한 계산을 수행하였다. 높이의 변화에 따라 계산된 무차원계수, 압력 및 속도분포는 해면효과의 특성을 잘 보여주고 있다.

  • PDF

Performance Prediction a 10MW-Class Wind Turbine Blade Considering Aeroelastic Deformation Effect (공탄성 변형효과를 고려한 10MW급 풍력발전기 블레이드의 성능해석)

  • Kim, Dong-Hyun;Kim, Yo-Han;Ryu, Gyeong-Joong;Kim, Dong-Hwan;Kim, Su-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.657-662
    • /
    • 2011
  • In this study, aeroelastic performance analyses have been conducted for a 10MW class wind turbine blade model Advanced computational analysis system based on computational fluid dynamics (CFD) and computational structural dynamics (CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade Reynolds-averaged Navier-Stokes (RANS) equations with k-${\omega}$ SST turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems.

  • PDF

Numerical Viscous Flow Analysis of Ducted Marine Propeller (Ducted Marine Propeller의 점성 유동 수치 해석)

  • Yu Hye-Ran;Jung Young-Rae;Park Warn-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.188-193
    • /
    • 2003
  • The present work solved 3D incompressible RANS equation on a rotating, non-orthogonal multi-blocked grid system to efficiently analyze ducted marine propulsor with rotor-stator interaction. To handle the interface boundary between a rotor and a stator maintaining the conservative property, the sliding multiblock technique using the cubic spline interpolation and the bilinear interpolation technique were applied. To validate present code, a turbine flow having rotor- stator interaction was simulated. Time averaged pressure coefficients were compared with experiments and good agreement was obtained. After the code validation, the flowfield around a single-stage ducted marine propulsor was simulated.

  • PDF

Numerical investigation of Turbulent Flow in $270^{\circ}$ Bend using DES approaches (DES 모형을 이용한 270도 곡관 내 난류유동에 관한 수치해석)

  • Seo, Jeong-Sik;Shin, Jong-Keun;Hong, Seong-Ho;Choi, Young-Don
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.558-563
    • /
    • 2007
  • Detached Eddy Simulation(DES) is performed for turbulent flow of the $270^{\circ}$ bend at a Reynolds number of 56,690. A Fine grid generation is used near a wall in order to satisfy the wall boundary condition of y+<1. Turbulence models adopted for DES and Reynolds Average Navier Stokes(RANS) simulation are SST(Shear Stress Transfort) model. Solutions for both streamwise and circumferential velocity components are compared with the experimental data by Lee for $270^{\circ}$ bend and by Chang for $180^{\circ}$ bend.

  • PDF

Numerical Simulation of Turbulent Flow around 2-D Airfoils in Ground Effect (CFD에 의한 2차원 지면 효과익 주위의 난류유동계산)

  • H.H. Chun;R.H. Chang;M.S. Shin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.28-40
    • /
    • 2002
  • Turbulent flows around two-dimensional wing sections in ground effect are analysed by incompressible RANS equations and a finite difference method. The Baldwin-Lomax algebraic turbulence model is used to simulate high Reynolds number flows. The main purpose of this study is to clarify the two-dimensional ground effect and its flow characteristics due to different ground boundary conditions, i.e., moving and fixed bottom boundary. As a first step, to validate the present numerical code, the computational result of Clark-Y(t/C 11.7%) is compared with published numerical results and experimental data. Then, NACA4412 section in ground effect is calculated for various ground clearances with two bottom boundary conditions. According to the computational results, the difference in the lift and moment simulated with the two bottom boundary conditions is negligible, but the drag force simulated by the fixed bottom is to some extent smaller than that by the moving bottom. Therefore, it can be concluded that the drag force measured in a wind tunnel with the fixed bottom could be smaller than that with the moving bottom.

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

Three-dimensional Numerical Analysis of Dam-break Waves on a Fixed and Movable Bed (고정상 및 이동상 수로에서 댐 붕괴파의 3차원 수치해석)

  • Kim, Dae Geun;Hwang, Gun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.333-341
    • /
    • 2011
  • This study analyzed the propagation of dam-break waves in an area directly downstream of a dam by using 3D numerical modeling with RANS as the governing equation. In this area, the flow of the waves has three dimensional characteristics due to the instantaneous dam break. In particular, the dam-break flows are characterized by a highly unsteady and discontinuous flow, a mixture of the sharp flood waves and their reflected waves, a mixture of subcritical and supercritical flow, and propagation in a dry and movable bed. 2D numerical modeling, in which the governing equation is the shallow water equation, was regarded as restricted in terms of dealing with the sharp fluctuation of the water level at the dam-breaking point and water level vibration at the reservoir. However, in this 30 analysis of flood wave propagation due to partial dam breaking and dam-break in channels with $90^{\circ}$ bend, those phenomena were properly simulated. In addition, the flood wave and bed profiles in a movable bed with a flat/upward/downward bed step, which represents channel aggradation or degradation, was also successfully simulated.

Analysis of the flood Characteristics in the Woo-Ee Stream Using FLOW-3D (FLOW-3D를 이용한 우이천의 홍수특성 분석)

  • Yoon, Sun-Kwon;Moon, Young-Il;Kim, Jong-Suk;Oh, Keun-Taek;Lee, Su-Gon
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.603-607
    • /
    • 2007
  • Recently, the frequency of unexpecting heavy rains has been increased due to abnormal climate and extreme rainfall. There was a limit to analyze one dimension or two dimension stream flow of domestic rivers that was applied simple momentum equation and fixed energy conservation. Therefore, hydrodynamics flow analysis in rivers has been needed three dimensional numerical analysis for correct stream flow interpolation. In this study, CFD model on FLOW-3D was applied to stream flow analysis, which solves three dimension RANS(Reynolds Averaged Navier-Stokes Equation) control equation to find out physical behavior and the effect of hydraulic structures. Numerical simulation accomplished those results was compared by using turbulence models such as $k-{\backepsilon}$, RNG $k-{\backepsilon}$ and LES. Those numerical analysis results have been illustrated to bends and junctions by the turbulence energy effects, velocity of flow distributions, water level pressure distributions and eddy flows.

  • PDF