• Title/Summary/Keyword: RANS equation

Search Result 126, Processing Time 0.028 seconds

3D RANS Simulation and the Prediction by CRN Regarding NOx in a Lean Premixed Combustion in a Gas Turbine Combustor (희박 예혼합 가스터빈 연소기 3 차원 전산 해석 및 화학반응기 네트워크에 의한 NOx 예측)

  • Yi, Jae-Bok;Jeong, Dae-Ro;Huh, Kang-Yul;Jin, Jae-Min;Park, Jung-Kyu;Lee, Min-Chul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1257-1264
    • /
    • 2011
  • This paper presents 3D simulation by STAR-CCM+ for lean premixed combustion in a stationary gas turbine combustor with separate pilot and main nozzles. The constant for the source term in the flame area density transport equation was modified to account for a low global equivalence ratio and validated against measurement data. A Partially-premixed Coherent Flame Model(PCFM) involves propagation of a laminar premixed flame with the predicted flame surface density and equilibrium assumption in the burned gas with spatial inhomogeneity. The conditions for cooling by radiation and convection are considered for accurate determination of the heat flux on the wall. A parametric study is of the pilot-fuel-to-total-fuel-ratio is carried out. A chemical reactor network (CRN) was constructed on the basis of the 3D simulation results and compared against measurements of NOx.

A study on the identification of underwater propeller singing phenomenon (수중 프로펠러 명음 현상의 규명에 관한 연구)

  • Kim, Taehyung;Lee, Hyoungsuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.2
    • /
    • pp.92-98
    • /
    • 2018
  • This paper is a study on the generation mechanism of propeller singing based on the cavitation tunnel test, underwater impact test, finite element analysis and computational flow analysis for the model propeller. A wire screen mesh, a propeller and a rudder were installed to simulate ship stern flow, and occurrence and disappearance of propeller singing phenomenon were measured by hydrophone and accelerometer. The natural frequencies of propeller blades were predicted through finite element analysis and verified by contact and non-contact impact tests. The flow velocity and effective angle of attack for each section of the propeller blades were calculated using RANS (Reynolds Averaged Navier-Stokes) equation-based computational fluid analysis. Using the high resolution analysis based on detached eddy simulation, the vortex shedding frequency calculation was performed. The numerical predicted vortex shedding frequency was confirmed to be consistent with the singing frequency and blade natural frequency measured by the model test.

Analysis of Flow through High Pressure Bypass Valve in Power Plant (발전소용 고압 바이패스 밸브의 유동해석)

  • Cho, An-Tae;Kim, Kwang-Yong
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2558-2562
    • /
    • 2007
  • In the present work, flow characteristics analysis has been performed for steam turbine bypass control valve (single-path type). The numerical analysis is performed by solving three-dimensional Reynolds-averaged Navier-Stokes (RANS) equations. Shear stress transport (SST) model is used as turbulence closure. Symmetry condition is applied at the mid plane of the valve while adiabatic condition is used at the outer wall of the cage. Grid independency test is performed to find the optimal number of grid points. The pressure and temperature distributions on the outer wall of the cage are analyzed. Mass flow rate at maximum plug opening condition is compared with the designed mass flow rate.

  • PDF

Numerical Analysis on the Flow Noise Characteristics of Savonius Wind Turbines (사보니우스 풍력발전기의 유동소음특성에 관한 수치적 연구)

  • Kim, Sanghyeon;Cheong, Cheolung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.6
    • /
    • pp.502-511
    • /
    • 2013
  • Noise performance of small wind turbines is critical since these are generally installed near the community. In this study, flow noise characteristics of Savonius wind turbines are numerically investigated. Flow field around the turbine are computed by solving unsteady RANS equation using CFD techniques and the radiated noise are predicted by applying acoustic analogy to the computed flow data. Parametric study is then carried out to investigate the effects of operating conditions and geometric design factors of the Savonius wind turbine. Tonal noise components with higher harmonic frequency than the BPF are identified in the predicted noise spectra from a Savonius wind turbine. The end-plates and helical blades are shown to reduce overall noise levels. These results can be used to design low-noise Savonius wind turbines.

SHIP RESISTANCE AND PROPULSION PERFORMANCE TEST USING HYBRID MESH AND SLIDING MESH (Hybrid mesh 및 sliding mesh를 이용한 선박 저항추진 성능 시험)

  • Park, Bum-Jin;Rhee, Shin-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.77-83
    • /
    • 2009
  • In this study, we conducted resistance and propulsion performance test of ship composed of the Resistance Test, Propeller Open Water Test and Self Propulsion Test using the CFD(Computational Fluid Dynamics). We used commercial RANS(Reynolds Averaged Navier Stokes equation) solver, as a calculating tool. The unstructured grids were used in a bow and stern of ship, having complex shape, for a convenience of generating grids, and the structured grids were adopted in a central hull and rest of hull having a relatively simple shape which is called hybrid grid method. In addition, The sliding mesh method was adopted to rotate a propeller directly in the Propeller Open Water and Self Propulsion Test. The Resistance Test and Self Propulsion Test were calculated using Volume of Fluid (VOF) model and considering a free surface. And all The three cases were applied realizable k-epsilon model as the turbulence model. The results of calculations were verified for the suitability of calculations by comparing MOERI's EFD results.

  • PDF

NUMERICAL STUDY ON DPS THRUSTER-HULL INTERACTION WITH DIFFERENT AXIS TILTING ANGLE (축기울기에 따른 DPS 스러스터와 선체의 상호간섭 수치해석)

  • Jin, D.-H.;Lee, S.-W.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.72-77
    • /
    • 2016
  • In this study, effects of thurster axis tilting angle on the thruster-hull interaction and propulsion performance in a dynamic positioning system of offshore plant are numerically investigated. Straight and 7-degree tilted downward thruster models as a form of ducted propeller are considered. For numerical simulations, Reynolds averaged Navier-Stokes equations with SST turbulence model are solved by using STAR-CCM+. Results show that thruster-hull interaction is reduced in 7-degree tilted thruster model with lower vortex strength between thruster and hull bottom, although the propulsion performance does not have noticeable difference in a bollard condition.

VISCOUS FLOW ANALYSIS OF UNDERWATER PROPULSOR USING AN UNSTRUCTURED OVERSET MESH TECHNIQUE (비정렬 중첩격자기법을 이용한 수중추진기 주위의 점성유동 해석)

  • An, S.J.;Kwon, O.J.;Jung, Y.P.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.341-346
    • /
    • 2010
  • In this paper, viscous flow calculation of pump-jet that is used as underwater propulsor was made by using RANS equation. For the validation, calculation for DTRC4119 marine propeller was made and reasonable agreements were obtained between the present results and the experiment. An unstructured overset mesh technique is used for analysis of relative motion between rotor and stator in pump-jet propulsor. Results for pump-jet propulsor were compared with computational results of another researcher.

  • PDF

NUMERICAL FLOW FIELD ANALYSIS OF AN ARCJET THRUSTER (Arcjet Thruster 유동의 전산해석)

  • Shin, Jae-Ryul;Choi, Jeong-Yeol
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2006.10a
    • /
    • pp.101-105
    • /
    • 2006
  • The computational fluid dynamic analysis has been conducted for the thermo-chemical flow field in an arcjet thruster with mono-propellant Hydrazine (N2H4) as a working fluid. The Reynolds Averaged Navier-Stokes (RANS) equations are modified to analyze compressible flows with the thermal radiation and electric field. The Maxwell equation, which is loosely coupled with the fluid dynamic equations through the Ohm heating and Lorentz forces, is adopted to analyze the electric field induced by the electric arc. The chemical reactions of Hydrazine were assumed to be infinitely fast due to the high temperature field inside the arcjet thruster. The chemical and the thermal radiation models for the nitrogen-hydrogen mixture and optically thick media respectively, were incorporated with the fluid dynamic equations. The results show that performance indices of the arcjet thruster with 1kW arc heating are improved by amount of 180% in thrust and 200% in specific impulse more than frozen flow. In addition to thermo-physical process inside the arcjet thruster is understood from the flow field results.

  • PDF

Computational study on turbulent flows inside the duct of marine waterjet propulsor (선박 워터제트 추진기 덕트 내부의 난류유동 해석에 관한 연구)

  • Park Il-Ryong;Kim Wu-Joan;Ahn Jong-Woo;Kim Ki-Sup
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.181-184
    • /
    • 2002
  • CFD calculations are carried out to investigate the turbulent flow characteristics inside the duct of marine waterjet propulsors. The Reynolds-averaged Wavier-Stokes equations are solved using a finite-volume method. Standard $k-{\varepsilon}$ model and realizable $k-{\varepsilon}$ model are evaluated with an existing experimental data. Multi-block grid topology is adopted to describe the details of complex duct geometry. The present numerical methods are applied to the preliminary duct design of new waterjet propulsor system. Four different influx conditions are simulated to find out pressure and velocity distribution inside the intake duct. Attention is also paid upon the possible flow separation inside the waterjet duct. It is found that CFD tools can be used for the initial evaluation of inflow condition into the impeller of waterjet propulsor system.

  • PDF

A Numerical Study on the Performance of a Two-Stage Ejector-Diffuser System

  • Kong, Fanshi;Kim, Heuy Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.548-553
    • /
    • 2015
  • The conventional ejector-diffuser system makes use of high pressure primary stream to propel the secondary stream through pure shear action for the purposes of transport or compression of fluid. It has been widely used in many industrial applications such as seawater desalination, solar refrigeration, marine engineering, etc. The present study is performed numerically to study the performance of a two-stage ejector-diffuser system. The detailed flow phenomenon of the ejector-diffuser system has been critically predicted by means of the numerical approach using compressible Reynolds averaged Navier-Stokes (RANS) equations. The axi-symmetric supersonic ejector-diffuser flow has been solved by a fully implicit finite volume scheme with a two-equation k-omega turbulence model. The numerical results are validated with existing experimental data. Detailed flow physics and their contributions on ejector performance are detected to compare both single-stage and two-stage ejectors. The performance improvement on the ejector-diffuser system is discussed in terms of the mass flux ratio and the coefficient of power.