• Title/Summary/Keyword: RANS equation

Search Result 126, Processing Time 0.031 seconds

Numerical investigation on cavitation and non-cavitation flow noise on pumpjet propulsion (펌프젯 추진기의 공동 비공동 유동소음에 대한 수치적 연구)

  • Garam Ku;Cheolung Cheong;Hanshin Seol;Hongseok Jeong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.3
    • /
    • pp.250-261
    • /
    • 2023
  • In this study, the noise contributions by the duct, stator and rotor, which are the propulsor components, are evaluated to identify the flow noise source in cavitation and non-cavitation conditions on pumpjet propulsion and the noise levels in both conditions are compared. The unsteady incompressible Reynolds averaged Navier-Stokes (RANS) equation based on the homogeneous mixture assumption is applied on the suboff submarine hull and pumpjet propeller in the cavitation tunnel, and the Volume of Fluid (VOF) method and Schnerr-Sauer cavitation model are used to describe the two-phase flow. Based on the flow simulation results, the acoustic analogy formulated by Ffowcs Williams and Hawkings (FW-H) equation is applied to predict the underwater radiated noise. The noise contributions are evaluated by using the three types of impermeable integral surface on the duct, stator and rotor, and the two types of permeable integral surface surrounding the propulsor. As a result of noise prediction, the contribution by the stator is insignificant, but it affects the generation of flow noise source due to flow separation in the duct and rotor, and the noise is predominantly radiated into the upward and right where the flow separations are. Also, the noise is radiated into the thrust direction due to pressure fluctuation between suction and pressure sides on the rotor blades, and the it can be seen that the cavitation effect into the noise can be considered through the permeable integral surface.

Numerical and experimental investigations on the aerodynamic and aeroacoustic performance of the blade winglet tip shape of the axial-flow fan (축류팬 날개 끝 윙렛 형상의 적용 유무에 따른 공기역학적 성능 및 유동 소음에 관한 수치적/실험적 연구)

  • Seo-Yoon Ryu;Cheolung Cheong;Jong Wook Kim;Byeong Il Park
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.103-111
    • /
    • 2024
  • Axial-flow fans are used to transport fluids in relatively low-pressure flow regimes, and a variety of design variables are employed. The tip geometry of an axial fan plays a dominant role in its flow and noise performance, and two of the most prominent flow phenomena are the tip vortex and the tip leakage vortex that occur at the tip of the blade. Various studies have been conducted to control these three-dimensional flow structures, and winglet geometries have been developed in the aircraft field to suppress wingtip vortices and increase efficiency. In this study, a numerical and experimental study was conducted to analyze the effect of winglet geometry applied to an axial fan blade for an air conditioner outdoor unit. The unsteady Reynolds-Averaged Navier-Stokes (RANS) equation and the FfocwsWilliams and Hawkings (FW-H) equation were numerically solved based on computational fluid dynamics techniques to analyze the three-dimensional flow structure and flow noise numerically, and the validity of the numerical method was verified by comparison with experimental results. The differences in the formation of tip vortex and tip leakage vortex depending on the winglet geometry were compared through a three-dimensional flow field, and the resulting aerodynamic performance was quantitatively compared. In addition, the effect of winglet geometry on flow noise was evaluated by numerically simulating noise based on the predicted flow field. A prototype of the target fan model was built, and flow and noise experiments were conducted to evaluate the actual performance quantitatively.

PROPULSIVE PERFORMANCE PREDICTION OF A DUCTED PROPELLER IN OPEN WATER CONDITION USING CFD (CFD를 이용한 덕트 프로펠러 단독 상태에서의 추진 성능 예측)

  • Lee, K.-U.;Jin, D.-H.;Lee, S.-W.
    • Journal of computational fluids engineering
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2015
  • In this study, a numerical prediction on propulsive performance of a ducted propeller in open water condition was carried out by solving Reynolds averaged Navier-Stokes(RANS) equation using computational fluid dynamics(CFD). A configuration of propeller Ka-470 inside duct 19A was considered. Hexahedral grid system was generated by dividing whole computational domain into three separate regions; propeller, duct and outer flow region. A commercial CFD software, ANSYS-CFX was used for numerical simulations. Results were compared with experimental data and showed considerable improvement in accuracy, in comparison to those from surface panel method which is based on potential flow assumption. The results also exhibited the importance of grid system within the gap between the inner surface of duct and blade tip for accurate prediction of propulsive performance of ducted propeller.

Circular Motion Test Simulation of KVLCC1 Using CFD (CFD를 이용한 KVLCC1의 Circular Motion Test 시뮬레이션)

  • Shin, Hyun-Kyoung;Jung, Jae-Hwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.47 no.3
    • /
    • pp.377-387
    • /
    • 2010
  • In this study, the turbulent free surface around KVLCC1 employed in the circular motion test simulation is numerically calculated using a commercial CFD(Computational Fluid Dynamics) code, FLUENT. Also, hydrodynamic forces and yaw moments around a ship model are calculated during the steady turning. Numerical simulations of the turbulent flows with free surface around KVLCC1 have been carried out by use of RANS equation based on calculation of hydrodynamic forces and yaw moments exerted upon the ship hull. Wave elevation is simulated by using the VOF method. VOF method is known as one of the most effective numerical techniques handling two-fluid domains of different density simultaneously. Boundary layer thickness and wake field are changed various yaw velocities of ship model during the steady turning. The calculated hydrodynamic forces are compared with those obtained by model tests.

Topological View of Viscous Flow behind Transom Stern (트랜섬 선미 후방의 점성 유동장 Topology 관찰)

  • Kim, Wu-Joan;Park, Il-Ryong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.4 s.142
    • /
    • pp.322-329
    • /
    • 2005
  • Viscous flows behind transom stern are analyzed based on CFD simulation results. Stern wave pattern is often complicated due to the abrupt change of stern surface curvature and flow separation at transom. When a ship advances at high speed, whole transom stern is exposed out of water, resulting in the so-called 'dry transom'. However, in the moderate speed regime, stern wave development in conjunction of flow separation makes unstable wavy surface partially covering transom surface, i.e., the so-called 'wetted transom'. Transom wave formation is usually affecting the resistance characteristics of a ship, since the pressure contribution on transom surface as well as the wave-making resistance is changed. Flow modeling for 'wetted transom' is difficult, while the 'dry transom modeling' is often applied for the high-speed vessels. In the present study CFD results from the RANS equation solver using a finite volume method with level-set treatment are utilized to assess the topology of transom flow pattern for a destroyer model (DTMB5415) and a container ship (KCS). It is found that transom flow patterns are quite different for the two ships, in conformity to the shape of submerged transom. Furthermore, the existence of free surface seems to after the flow topology in case of KCS.

SHIP RESISTANCE AND PROPULSION PERFORMANCE TEST USING HYBRID MESH AND SLIDING MESH (Hybrid mesh 및 sliding mesh를 이용한 선박 저항추진 성능 시험)

  • Lee, Ju-Hyun;Park, Bum-Jin;Rhee, Shin-Hyung
    • Journal of computational fluids engineering
    • /
    • v.15 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • In this study, we conducted resistance and propulsion performance test of ship composed of the Resistance Test, Propeller Open Water Test and Self Propulsion Test using the CFD(Computational Fluid Dynamics). We used commercial RANS(Reynolds Averaged Navier Stokes equation) solver, as a calculating tool. The unstructured grids were used in a bow and stern of ship, having complex shape, for a convenience of generating grids, and the structured grids were adopted in a central hull and rest of hull having a relatively simple shape which is called hybrid grid method. In addition, The sliding mesh method was adopted to rotate a propeller directly in the Propeller Open Water and Self Propulsion Test. The Resistance Test and Self Propulsion Test were calculated using Volume of Fluid (VOF) model and considering a free surface. And all The three cases were applied realizable k-epsilon model as the turbulence model. The results of calculations were verified for the suitability of calculations by comparing MOERI's EFD results.

NUMERICAL STUDY ON FILM-COOLING EFFECTIVENESS FOR VARIOUS FILM-COOLING HOLE SCHEMES (다양한 막냉각 홀 형상에 대한 막냉각 효율의 수치해석)

  • Kim, S.M.;Lee, K.D.;Kim, K.Y.
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.92-99
    • /
    • 2011
  • In order to protect the turbine blade from working fluid of high temperature, many cooling techniques such as internal convection cooling, film cooling, impinging jet cooling and thermal barrier coating have been developed. With all other things, film-cooling has been widely used as the important alternative. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as cylindrical, crescent, louver, and dumbbell holes. To analyze the turbulent flow and the film-cooling mechanism, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been assessed in comparison with experimental data. The characteristics of fluid flow and the film-cooling performance for each shaped hole have been investigated and evaluated in terms of centerline, laterally averaged and spatially averaged film-cooling effectivenesses. Among the film cooling holes, the dumbbell shaped hole shows better film-cooling effectiveness than the other shaped holes. And the louver and cylindrical shaped hole show the worst film cooling performance, and concentrated flows on near the centerline only.

CAVITATION FLOW SIMULATION FOR A 2-D HYDROFOIL USING A HOMOGENEOUS MIXTURE MODEL ON UNSTRUCTURED MESHES (비정렬 격자계에서 균질혼합 모델을 이용한 2차원 수중익형 주위의 캐비테이션 유동 해석)

  • Ahn, S.J.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.94-100
    • /
    • 2012
  • In this paper, the cavitating flows around a hydrofoil have been numerically investigated by using a 2-d multi-phase RANS flow solver based on pseudo-compressibility and a homogeneous mixture model on unstructured meshes. For this purpose, a vertex-centered finite-volume method was utilized in conjunction with 2nd-order Roe's FDS to discretize the inviscid fluxes. The viscous fluxes were computed based on central differencing. The Spalart-Allmaras one equation model was employed for the closure of turbulence. A dual-time stepping method and the Gauss-Seidel iteration were used for unsteady time integration. The phase change rate between the liquid and vapor phases was determined by Merkle's cavitation model based on the difference between local and vapor pressure. Steady state calculations were made for the modified NACA66 hydrofoil at several flow conditions. Good agreements were obtained between the present results and the experiment for the pressure coefficient on a hydrofoil surface. Additional calculation was made for cloud cavitation around the hydrofoil. The observation of the vapor structure, such as cavity size and shape, was made, and the flow characteristics around the cavity were analyzed. Good agreements were obtained between the present results and the experiment for the frequency and the Strouhal number of cavity oscillation.

A Study on the De-Icing Performance Evaluation and Design Guide for Ice Class Louver of the Vessels Operating in Cold Region (빙해선박 아이스 클래스 루버의 해빙(de-icing) 성능평가 및 설계기준에 관한 연구)

  • Jung, Young-Jun;Seo, Young-Kyo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.52 no.4
    • /
    • pp.323-329
    • /
    • 2015
  • For the design guide of a vessel operating in cold region, numerical analysis was carried out to evaluate the ice class louver which installed the heating cables by using ANSYS 13.0 CFX. The numerical analysis was performed by considering Unsteady Reynolds Averaged Navier Stokes (RANS) equation. This study based on the experimental results of ‘The Cryogenic Performance Evaluation for the Excellent De-icing Ice Class Louver’ in KRISO. For validation of the numerical analysis results, the cold chamber experimental data measured by the heat sensors in certain location of the ice class louver was used. The external environmental temperature which varies from 0℃ to –30℃ was considered in numerical analysis. Also the design guide for optimum de-icing presented through heating cable power capacity(33 W/m, 45 W/m, 66 W/m), location of the heating cable(front, center, behind on the blade) and relative velocity(1 m/s, 4 m/s, 7 m/s).

NUMERICAL STUDY ON FILM-COOLING EFFECTIVENESS FOR VARIOUS FILM-COOLING HOLE SCHEMES (다양한 막냉각 홀 형상에 대한 막냉각 효율의 수치해석)

  • Kim, S.M.;Lee, K.D.;Kim, K.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.104-111
    • /
    • 2011
  • To protect the turbine blade, many cooling techniques has developed. With all other things, film-cooling has been widely used as the important alternative. In the present work, numerical analysis has been performed to investigate and to compare the film-cooling performance of various film-cooling hole schemes such as cylindrical, crescent, louver, and dumbbell holes. To analyze the turbulent flow and the film-cooling mechanism, three-dimensional Reynolds-averaged Navier-Stokes analysis has been performed with shear stress transport turbulence model. The validation of numerical results has been assessed in comparison with experimental data. The characteristics of fluid flow and the film-cooling performance for each shaped hole have been investigated and evaluated in terms of centerline, laterally averaged and spatially averaged film-cooling effectivenesses. The dumbbell shaped hole shows better film-cooling effectiveness than other shaped holes. And the louver and cylindrical shaped hole shows lower one, and concentrated flow on centerline only.

  • PDF