• Title/Summary/Keyword: RCEM

Search Result 8, Processing Time 0.026 seconds

Combustion Characteristics of Diesel Spray Impinging on a Glow Plug in RCEM (급속압축팽창장치에서의 글로우 플러그 충돌분무의 연소 특성)

  • Kim, C.H.;Kim, J.W.;Park, K.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.22-34
    • /
    • 1997
  • Circumstances require improving diesel engine, and many studies have been done in constant volume chamber(CVC). Because the combustion mechanism of a diesel engine has many difficulties with non-homogeneous nature, there has been a limitation to analyzing the combustion mechanism with CVC. Studies are often given in a real engine, but also it has difficulties in modifying configuration of combustion chamber etc. To get more easy way for mote engine-like test, a rapid compression mechanism has been introduced. This study addresses to designing a rapid compression expansion machine(RCEM) driven by compressed air, and to applying it on IDI diesel combustion chamber which has a glow plug. RCEM is introduced first and its characteristics are tested, then spray/combustion characteristics of diesel spray impinging on a glow plug in RCEM combustion chamber are investigated. The results show active combustion in the system employing spray impinging on a glow plug so as to improve combustion efficiency.

  • PDF

A Study on the Characteristics of Ignition and Combustion, in a Diesel Spray Using Multi-Component Mixed Fuels (다성분 혼합연료를 이용한 디젤분무의 착화연소특성에 관한 연구)

  • Yoon, Jun-Kyu;Lim, Jong-Han
    • Journal of Energy Engineering
    • /
    • v.16 no.3
    • /
    • pp.120-127
    • /
    • 2007
  • The purpose of this study is experimentally to analyze that the fuel mass fractions of multi-component mixed fuels have an effect on the characteristics of spray ignition and combustion under the ambient conditions of diesel combustion fields. The characteristics of ignition and combustion were investigated by chemiluminescence images and direct photography. The experiments were conducted in the RCEM(rapid compression expansion machine) with optical access. Multi-component fuels mixed with i-octane, n-dodecane and n-hexadecane are injected in RCEM by the electronic control of common rail injector. Experimental conditions set up 42, 72 and 112 MPa in injection pressure, 700, 800 and 900 K in ambient gas temperature. The results show that the ignition delay was dependent on high cetane number. In case of low ambient temperature, the more low boiling point fuels were mixed, the lower luminance regime had a remarkable effect and also shortened diffusion combustion by increasing heat release rate.

Comparison of Spray and Combustion Characteristics between LPG and Gasoline Fuels in RCEM (급속압축팽창장치 내에서 LPG 연료와 가솔린 연료의 분무 및 연소특성 비교)

  • Jo, Gyu-Baek;Jeong, Dong-Su;Jeong, Yong-Il
    • 연구논문집
    • /
    • s.29
    • /
    • pp.29-38
    • /
    • 1999
  • In comparison with gasoline engine, LPG direct injection engine has some advantages not only in emission and fuel efficiency but also in prevention of power decrease and back fire etc. which are disadvantages of conventional LPG engine. In this study, comparision tests of the incylinder spray and combustion characteristics between of LPG and gasoline fuels were performed in the RCEM as a basic research for the development of future LPG engine with low emission and high fuel efficiency During the direct injection of LPG fuel and gasoline into the inside of RCEM, spray development characteristics according to the injection condition have been photographed by the high speed shadow graph methods. The conditions for the optimum mixture distribution of LPG and gasoline fuels are achievable at the selected ignition timing, respectively.

  • PDF

A Study on the Normal Combustion and Abnormal Combustion in Automotive S.I.Engine (Knocking Phenomena in Quiscent or Swirl Flow Field) (자동차용 가솔린 기관의 정상연소 및 이상연소에 관한 연구)

  • Lee, K.W.;Fujimoto, H.;Park, K.S.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.3 no.6
    • /
    • pp.250-261
    • /
    • 1995
  • In this study, a rapid compression and expansion machine(RCEM) equipped with a swirl generator was designed and developed, in order to clarify normal and abnormal combustion(knocking phenomena). This RCEM is intended to simulate combustion process in actual automotive S.I.engines, having a high reproducibility in the compression stroke. Flame propagation and autoignition processes associated with normal and abnormal combustion were captured by the high speed schlieren photography. And swirl intensity. equivalence ratio and ignition position were varied to investigate the effect of turbulence, concentration in the unburnt gas region and flame propagation length. The knock intensity, knock mass fraction and knock mass fraction after autoignition were calculated by use of history of measured cylinder pressure.

  • PDF

A Study on In-cylinder and Combustion Characteristics of GDI Engine using RCEM (급속 압축팽창 장치를 이용한 직접분사식 가솔린 기관의 실린더 내 분무 및 연소특성에 관한 연구)

  • 조규백;정용일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.76-85
    • /
    • 1999
  • GDI(Gasoline Direct Injection( engine technology is well known as a new technology since it can improve fuel consumption and meet future emission regulations. But the GDI has many difficulties to be solved, such as complexity of injection control mode, unburned hydrocarbon, and restricted power. A 2-D shape combustion chamber was adopted to investigate mixture formation and combustion characteristics of GDI engine. Spray and combustion experiments were performed by changing the injection timing. injection pressure an din-cylinder flow in Rapid Compression and Expansion Machine(RCEM).Through the experiments, the detailed characteristics of fuel spray and combustion was analyzed by visualizing the in-cylinder phenomena according to the change of injection condition, and the optimal fuel injection timing and fuel injection pressure were obtained.

  • PDF

2색법에 의한 에멀죤 연료의 화염온도 및 soot 분포 측정에 관한 실험적 연구

  • Park, Jae-Wan;Park, Gwon-Ha;Heo, Gang-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.103-110
    • /
    • 1998
  • This experiment is performed to investigate the effects of the emulsion on the flame temperature and soot formation in a diesel engine. The two-color method is used to measure the flame temperature for combustion of emulsified diesel in the Rapid Compression and Expansion Machine(RCEM). The concentration of soot is estimated via calculation of the KL factor. The solenoid valve, elecronic controller and needle lift sensor are used to control the exact injection timing and duration under various operating conditions. According to the results the soot concentration is reduced with the increasing W/O while the temperature reduced. The pressure data and the flame images captured by a high speed camera show that the ignition delay of emulsified diesel increase the duration of premixed combustion. The sizes of water drops are measured to be about 10${\mu}m$ by a microscope.

  • PDF

Study on Backfire for a Two-Stroke Hydrogen Fueled Free-Piston Engine with Loop Scavenging (루프소기방식을 갖는 2행정 프리피스톤 수소기관의 역화에 관한 연구)

  • Cho, Kwan-Yeon;Byun, Chang-Hee;Back, Dae-Ha;Lee, Jong-Tae
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.6
    • /
    • pp.487-492
    • /
    • 2010
  • For developing a two-stroke free-piston hydrogen engine with high efficiency and low emission, determination of the scavenging type is one of the most important factor. In this research, backfire characteristics for loop scavenging were analyzed with the number of piston crevice volume and piston expansion speed. Rapid Compression Expansion Machine, RCEM was used for combustion research of the free piston $H_2$ engine in the experiment. As the results, it was shown that although backfire occurring in a loop scavenging type can be partially controled by a complete exhaust of burned gas, possibility of backfire basically exist due to the structure which piston crevice volumes contact with fresh mixture in a scavenging port. However, a loop scavenging may be considered as combustion chamber of a free piston $H_2$ engine from the point of view that backfire does not occur nearby lean equivalence ratio obtained high thermal efficiency. It was also analyzed that an advances of backfire occurrence timing with increase of the fuel-air equivalence ratio were due to promotion of flame propagation into piston crevice volumes by decrease of the quenching distance.

HCCI Combustion of DME in a Rapid Compression and Expansion Machine (급속압축팽창기를 이용한 DME의 HCCI 연소)

  • Sung, Yong-Ha;Jung, Kil-Sung;Choi, Byung-Chul;Lim, Myung-Taeck
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.8-14
    • /
    • 2007
  • Compression ignition of homogeneous charges in IC engines indicates possibilities of achieving the high efficiency of DI diesel engines with low level of NOx and particulate emissions. The objectives of this study are to further understand the characteristics of the HCCI(Homogeneous charge compression ignition) combustion and to find ways of extending the rich HCCI operation limit in an engine-like environment. DME fuel is supplied either in the form of premixture with air or directly injected in the combustion chamber of a rapid compression and expansion machine under the conditions of various equivalence ratio and injection timing. The cylinder pressure is measured and the rate of heat release is computed from the measured pressure for the analysis of the combustion characteristics. The experimental data show that the RCEM can operate without knock on mixtures of higher equivalence ratio, when DME is directly injected in the combustion chamber than introduced as a fraction of a perfect or nearly perfect premixture. Very early fuel injection timings usually employed in HCCI operation are seen to have only insignificant effects in control of ignition timing.