• Title/Summary/Keyword: RF sputtering

Search Result 2,156, Processing Time 0.024 seconds

Growth of p-ZnO by RF-DC magnetron co-sputtering (RF-DC magnetron co-sputtering법에 의한 p-ZnO 박막의 성장)

  • Kang Seung Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.14 no.6
    • /
    • pp.277-280
    • /
    • 2004
  • p-ZnO films have been grown on (0001) sapphire substrates by RF-DC magnetron co-sputtering. The p-ZnO single crystalline thin films of the thickness about 120 nm were grown successfully. The dopant (Aluminum) was sputtered simultaneously from Al metal target by DC sputtering during rf-magnetron sputtering of ZnO at the substrate temperatures of $400^{\circ}C$ and $600^{\circ}C$ respectively. The crystallinity and optical properties of as-grown P-ZnO films have been characterized.

RF-enhanced DC-magnetron Sputtering of Indium Tin Oxide

  • Futagami, Toshiro;Kamei, Masayuki;Yasui, Itaru;Shigesato, Yuzo
    • The Korean Journal of Ceramics
    • /
    • v.7 no.1
    • /
    • pp.26-29
    • /
    • 2001
  • Indium tin oxide (ITO) films were deposited on glass substrates at $300^{\circ}C$ in oxygen/argon mixtures by RF-enhanced DC-magnetron sputtering and were compared to those by conventional DC magnetron sputtering. The RF enhancement was performed using a coil above an ITO target. X-ray diffraction measurements revealed that RF-enhanced plasma affected the preferred orientation and the crystallinity of the films. The resistivity of the films prepared by RF-enhanced DC-magnetron sputtering was almost constant at oxygen content lower than 0.3% and then increased sharply with increasing oxygen content. However the resistivity of the films by conventional sputtering has little dependence on the oxygen content. Those results can be explained on the basis of the incorporation of oxygen into the ITO films due to the RF enhancement.

  • PDF

A Comparison of the Properties of DC and RF Sputter - deposited Cr films (DC 및 RF 스퍼터링법으로 증착한 Cr 박막의 특성 비교)

  • Park, Min-Woo;Lee, Chong-Mu
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.461-465
    • /
    • 2006
  • Chromium (Cr) films were deposited on plain carbon steel sheets by DC and RF magnetron sputtering as well as by electroplating. Effects of DC or RF sputtering power on the deposition rate and properties such as, hardness, surface roughness and corrosion-resistance of the Cr films were investigated. X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microcopy (SEM) analyses were performed to investigate the crystal structure, surface roughness, thickness of the Cr films. Salt fog tests were used to evaluate the corrosion resistance of the samples. The deposition rate, hardness, and surface roughness of the Cr film deposited by either DC or RF sputtering increase with the increase of sputtering power but the adhesion strength is nearly independent of the sputtering power. The deposition rate, hardness, and adhesion strength of the Cr film deposited by DC sputtering are higher than those of the Cr film deposited by RF sputtering, but RF sputtering offers smoother surface and higher corrosion-resistance. The sputter-deposited Cr film is harder and has a smoother surface than the electroplated one. The sputter-deposited Cr film also has higher corrosion-resistance than the electroplated one, which may be attributed to the smoother surface of the sputter-deposited film.

The Structures, Optical and Electrical Properties of IGZO Thin Films by RF Magnetron Sputtering According to RF Power (RF magnetron sputtering으로 증착한 IGZO 박막의 RF power에 따른 구조적, 광학적 및 전기적 특성 연구)

  • Yeon, Je ho;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.3
    • /
    • pp.57-61
    • /
    • 2016
  • We have studied the structural, optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the silicon wafer by RF magnetron sputtering method. The RF power in sputtering process was varied as 15W, 30W, 45W, 60W, 75W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The Hall measurements in the low RF power is the high mobility above $10cm^2/V{\cdot}s$ and the low resistvity are obtained in the IGZO thin films.

Simulation and Characteristic Measurement with Sputtering Conditions of Triode Magnetron Sputter

  • Kim, Hyun-Hoo;Lim, Kee-Joe
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.11-14
    • /
    • 2004
  • An rf triode magnetron sputtering system is designed and installed its construction in vacuum chamber. In order to calibrate the rf triode magnetron sputtering for thin films deposition processes, the effects of different glow discharge conditions were investigated in terms of the deposition rate measurements. The basic parameters for calibrating experiment in this sputtering system are rf power input, gas pressure, plasma current, and target-to-substrate distance. Because a knowledge of the deposition rate is necessary to control film thickness and to evaluate optimal conditions which are an important consideration in preparing better thin films, the deposition rates of copper as a testing material under the various sputtering conditions are investigated. Furthermore, a triode sputtering system designed in our team is simulated by the SIMION program. As a result, it is sure that the simulation of electron trajectories in the sputtering system is confined directly above the target surface by the force of E${\times}$B field. Finally, some teats with the above 4 different sputtering conditions demonstrate that the deposition rate of rf triode magnetron sputtering is relatively higher than that of the conventional sputtering system. This means that the higher deposition rate is probably caused by a high ion density in the triode and magnetron system. The erosion area of target surface bombarded by Ar ion is sputtered widely on the whole target except on both magnet sides. Therefore, the designed rf triode magnetron sputtering is a powerful deposition system.

The optical and electrical properties of IGZO thin film fabricated by RF magnetron sputtering according to RF power (RF magnetron sputtering법으로 형성된 IGZO박막의 RF power에 따른 광학적 및 전기적 특성)

  • Zhang, Ya Jun;Kim, Hong Bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.1
    • /
    • pp.41-45
    • /
    • 2013
  • IGZO transparent conductive thin films were widely used as transparent electrode of optoelectronic devices. We have studied the optical and electrical properties of IGZO thin films. The IGZO thin films were deposited on the corning 1737 glass by RF magnetron sputtering method. The RF power in sputtering process was varied as 25, 50, 75and 100 W, respectively. All of the thin films transmittance in the visible range was above 85%. XRD analysis showed that amorphous structure of the thin films without any peak. The thin films were electrically characterized by high mobility above $13.4cm^2/V{\cdot}s$, $7.0{\times}10^{19}cm^{-3}$ high carrier concentration and $6{\times}10^{-3}{\Omega}-cm$ low resistivity. By the studies we found that IGZO transparent thin film can be used as transparent electrodes in electronic devices.

Preparation of Transparent conductive oxide cathode for Top-Emission Organic Light-Emitting Device by FTS system and RF system

  • Hong, Jeong-Soo;Park, Yong-Seo;Kim, Kyung-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.3
    • /
    • pp.23-27
    • /
    • 2010
  • We prepared Al doped ZnO thin film as a top electrode on a glass substrate with a deposited $Alq_3$ for the top emission organic Light emitting device (TEOLED) with facing target sputtering (FTS) method and radio-frequency (RF) sputtering method, respectively. Before the deposition of AZO thin film, we evaporated the $Alq_3$ on glass substrate by thermal evaporation. And we evaluated the damage of organic layer. As a result, PL intensity of $Alq_3$ on grown by FTS method showed higher than that of grown by RF sputtering method, so we found that the FTS showed the lower damage sputtering than RF sputtering. Therefore, we can expect the FTS method is promising the low-damage sputtering system that can be used as a direct sputtering on the organic layer.

The Structure, Optical and Electrical Characteristics of AZO Thin Film Deposited on PET Substrate by RF Magnetron Sputtering Method (PET 기판 위에 RF magnetron sputtering으로 증착한 AZO 박막의 구조적, 광학적, 전기적 특성)

  • Lee, Yun seung;Kim, Hong bae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.15 no.4
    • /
    • pp.36-40
    • /
    • 2016
  • The 2 wt.% Al-doped ZnO(AZO) thin films were fabricated on PET substrates with various RF power 20, 35, 50, 65, and 80W by using RF magnetron sputtering in order to investigate the structure, electrical and optical properties of AZO thin films in this study. The XRD measurements showed that AZO films exhibit c-axis orientation. At a RF power of 80W, the AZO films showed the highest (002) diffraction peak with a FWHM of 0.42. At a RF power of 65W, the lowest electrical resistivity was about $1.64{\times}[10]$ ^(-4) ${\Omega}-cm$ and the average transmittance of all films including substrates was over 80% in visible range. Good transparence and conducting properties were obtained due to RF power control. The obtained results indicate that it is acceptable for applications as transparent conductive electrodes.

A Study on the Characteristics of Ti Films Deposited by a DC Magnetron Sputtering Assisted with RF Voltage (고주파 마그네트론 스퍼터장치로 증착한 Ti 박막의 특성에 관한 연구)

  • Bae, Chang-Hwan;Lee, Ju-Hee;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.22 no.3
    • /
    • pp.143-148
    • /
    • 2009
  • We have fabricated Ti metal films on Cu wire substrates by using a RF magnetron sputtering method at different RF powers (0, 30 and 60 W) in a high vacuum, and we have investigated the thin film characteristics and resistivity. The ion bombardment effect is increased by the method to superimpose RF power to DC power applied to two poles of the base; thus, the thin film is deposited at sputtering gas pressures below 1 Pa. Moreover, the thin film formation of the multilayer structure becomes possible by gradually injecting the RF power, and the thin film quality is improved.

Effects of RF Power, Substrate Temperature and Gas Flow Ratio on the Mechanical Properties of WCx Films Deposited by Reactive Sputtering (반응성 스퍼터링법에서의 RF전력, 기판온도 및 가스유량비가 WCx막의 기계적 특성에 끼치는 효과)

  • Park Y. K.;Lee C. M.
    • Korean Journal of Materials Research
    • /
    • v.15 no.10
    • /
    • pp.621-625
    • /
    • 2005
  • Effects of rf power, pressure, sputtering gas composition, and substrate temperature on the deposition rate of the $WC_x$ coatings were investigated. The effects of rf power and sputtering gas composition on the hardness and corrosion resistance of the $WC_x$ coatings deposited by reactive sputtering were also investigated. X-ray diffraction (XRD) and Auger electron spectroscopy (AES) analyses were performed to determine the structures and compositions of the films, respectively. The hardnesses of the films were investigated using a nanoindenter, scanning electron microscopy, ana a salt-spray test, respectively. The deposition rate of the films was proportional to rf power and inversely proportional to the $CH_4$ content of $Ar/CH_4$ sputtering gas. The deposition rate linearly increased with increasing chamber pressure. The hardness of the $WC_x$ coatings Increased as rf power increased. The highest hardness was obtained at a $Ar/CH_4$ concentration of $10 vol.\%$ in the sputtering gas. The hardness of the $WC_x$ film deposited under optimal conditions was found to be much higher than that of the electroplated chromium film, although the corrosion resistance of the former was slightly lower than that of the latter.