• Title/Summary/Keyword: RNA binding protein

Search Result 744, Processing Time 0.033 seconds

Comparative Study of Nucletic Acid Binding of the Purified RBF Protein and Its Inhibition of PKR phosphorylation (RBF정제단백질의 핵산결합도 및 PKR효소의 인산화억제효과의 비교에 관한 연구)

  • 박희성;김인수
    • Journal of Life Science
    • /
    • v.8 no.2
    • /
    • pp.119-125
    • /
    • 1998
  • Column-purified double-stranded RNA binding factor (RBF) protein was tested for its binding affinity for the different forms of nucleic acids structure such as single-stranded(ss) and double-stranded(ds)RNA and ss- and dsDNA. The RBF protein was incubated with each of these nucleic acid structures in separate reactions and its comparative binding affnity was visualized by SDS-polyacrylamide gel electrophoresis. The RBF protein bound to the dsRNA molecule to form a tight RNA:protein complex in agreement with previous studies, but not to the other nucleic acid molecules confirming its distinctive affinity for the dsRNA structure. In phosphorylation assay in vito, the purified RBF protein significantly inhibited the autophosphorylation of the PKR derived from not only human but mouse source in the presence of poly(I):poly(C). It is suggesting that PKR vs. RBF is similarly under a competitive interaction among different eukaryotic organisms during protein synthesis.

  • PDF

Protein Kinase A Increases DNA-Binding Activity of Testis-Brain RNA-Binding Protein

  • Ju, Hyun-Hee;Ghil, Sung-Ho
    • Biomedical Science Letters
    • /
    • v.14 no.2
    • /
    • pp.77-81
    • /
    • 2008
  • Testis brain RNA-binding protein (TB-RBP) is a DNA/RNA binding protein. TB-RBP is mainly expressed in testis and brain and highly conserved protein with several functions, including chromosomal translocations, DNA repair, mitotic cell division, and mRNA transport, stabilization, and storage. In our previous study, we identified TB-RBP as an interacting partner for the catalytic subunit $(C{\alpha})$ of protein kinase A(PKA) and verified their interaction with several biochemical analyses. Here, we confirmed interaction between $C{\alpha}$. and TB-RBP in mammalian cells and determined the effect of $C{\alpha}$. on the function of TB-RBP. The activation of $C{\alpha}$. increased the TB-RBP function as a DNA-binding protein. These results suggest that the function of TB-RBP can be modulated by PKA and provide insights into the diverse role of PKA.

  • PDF

The Schizosaccharomyces pombe Proteins that Bind to the Human HnRNPA1 Winner RNA

  • Kim, Jeong-Kook
    • Journal of Microbiology
    • /
    • v.35 no.4
    • /
    • pp.327-333
    • /
    • 1997
  • Although extensively characterized in human cells, no heterogeneous nuclear ribonucleoprotein(hnRNP) has been found in the fission yeast Schizosaccharomyces pombe which is amenable to genetic studies and more similar to mammals than Saccharomyces cerevisiae is in terms of RNA processing. As a first step to characterize hnRNPs from S. pombe, attempt was made to find human hnRNP A1 homologs from S. pombe. The RNA molecule (A1 winner) containing the consensus high-affinity hnRNP A1 binding site (UAGGGA/U) was synthesized in vitro and used in an ultraviolet(UV) light-induced protein-RNA cross-linking assay. A number of S, pombe proteins bound to the A1 winner RNA. An approximately 50-kDa protein(p50) cross-linked more efficiently to the A1 winner RNA than other proteins. The p50 protein did not cross-link to a nonspecific RNA, but rather to the A1-5’ SS RNA in which the consensus 5’ splice junction sites of S. pombe introns were abolished. This suggests that the p50 protein, however, did not bind to the single-stranded DNA to shich the human hnRNP A1 could bind and be eluted with 0.5M NaCl. Further analysis should reveal more features of this RNA-binding protein.

  • PDF

Selection and Analysis of Genomic Sequence-Derived RNA Motifs Binding to C5 Protein

  • Kim, Kwang-sun;Ryoo, Hye-jin;Lee, June-Hyung;Kim, Mee-hyun;Kim, Tae-yeon;Kim, Yool;Han, Kook;Lee, Seol-Hoon;Lee, Young-hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.5
    • /
    • pp.699-704
    • /
    • 2006
  • Escherichia coli RNase P is a ribonucleoprotein composed of M1 RNA and C5 protein. Previously, analysis of RNA aptamers selected for C5 protein from a synthetic RNA library showed that C5 protein could bind various RNA molecules as an RNA binding protein. In this study, we searched cellular RNA motifs that could be recognized by C5 protein by a genomic SELEX approach. We found various C5 protein-binding RNA motifs derived from E. coli genomic sequences. Our results suggest that C5 protein interacts with various cellular RNA species in addition to M1 RNA.

Translational control of mRNAs by 3'-Untranslated region binding proteins

  • Yamashita, Akio;Takeuchi, Osamu
    • BMB Reports
    • /
    • v.50 no.4
    • /
    • pp.194-200
    • /
    • 2017
  • Eukaryotic gene expression is precisely regulated at all points between transcription and translation. In this review, we focus on translational control mediated by the 3'-untranslated regions (UTRs) of mRNAs. mRNA 3'-UTRs contain cis-acting elements that function in the regulation of protein translation or mRNA decay. Each RNA binding protein that binds to these cis-acting elements regulates mRNA translation via various mechanisms targeting the mRNA cap structure, the eukaryotic initiation factor 4E (eIF4E)-eIF4G complex, ribosomes, and the poly (A) tail. We also discuss translation-mediated regulation of mRNA fate.

Combining the Power of Advanced Proteome-wide Sample Preparation Methods and Mass Spectrometry for defining the RNA-Protein Interactions

  • Liu, Tong;Xia, Chaoshuang;Li, Xianyu;Yang, Hongjun
    • Mass Spectrometry Letters
    • /
    • v.13 no.4
    • /
    • pp.115-124
    • /
    • 2022
  • Emerging evidence has shown that RNA-binding proteins (RBPs) dynamically regulate all aspects of RNA in cells and involve in major biological processes of RNA, including splicing, modification, transport, transcription and degradation. RBPs, as powerful and versatile regulatory molecule, are essential to maintain cellular homeostasis. Perturbation of RNA-protein interactions and aberration of RBPs function is associated with diverse diseases, such as cancer, autoimmune disease, and neurological disorders. Therefore, it is crucial to systematically investigate the RNA-binding proteome for understanding interactions of RNA with proteins. Thanks to the development of the mass spectrometry, a variety of proteome-wide methods have been explored to define comprehensively RNA-protein interactions in recent years and thereby contributed to speeding up the study of RNA biology. In this review, we systematically described these methods and summarized the advantages and disadvantages of each method.

RNA Binding Specificities of Double-Stranded RNA Binding Protein (RBF) as an Inhibitor of PRK Kinase (PKR인산화효소 억제인자인 이중선RNA결합단백질 (RBF)의 RNA결합특이성)

  • 박희성;최장원
    • Journal of Life Science
    • /
    • v.6 no.4
    • /
    • pp.234-240
    • /
    • 1996
  • A double-stranded RNA binding factor (RBF), characterized as an inhibitor of PKR kinase in our previous study, was evaluated for its RNA binding specificities by RNA gel electrophoretic mobility shift analysis and membrane filter binding assay, RBF displayed affinities for a broad range of RNAs including viral RNAs and synthetic RNAs consiting of stem and loop structures. GC-rich RNA stem helices as short as 11 bp are suggested to represent the minimal binding motif for RBF. RBF binding to all the natural RNAs tested was reversible by poly(I): poly(C) addition, but E. coli 5S RNA was inefficient.

  • PDF

Flooding Stress-Induced Glycine-Rich RNA-Binding Protein from Nicotiana tabacum

  • Lee, Mi-Ok;Kim, Keun Pill;Kim, Byung-gee;Hahn, Ji-Sook;Hong, Choo Bong
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.47-54
    • /
    • 2009
  • A cDNA clone for a transcript preferentially expressed during an early phase of flooding was isolated from Nicotiana tabacum. Nucleotide sequencing of the cDNA clone identified an open reading frame that has high homology to the previously reported glycine-rich RNA-binding proteins. The open reading frame consists of 157 amino acids with an N-terminal RNA-recognition motif and a C-terminal glycine-rich domain, and thus the cDNA clone was designated as Nicotiana tabaccum glycine-rich RNA-binding protein-1 (NtGRP1). Expression of NtGRP1 was upregulated under flooding stress and also increased, but at much lower levels, under conditions of cold, drought, heat, high salt content, and abscisic acid treatment. RNA homopolymer-binding assay showed that NtGRP1 binds to all the RNA homopolymers tested with a higher affinity to poly r(G) and poly r(A) than to poly r(U) and poly r(C). Nucleic acid-binding assays showed that NtGRP1 binds to ssDNA, dsDNA, and mRNA. NtGRP1 suppressed expression of the fire luciferase gene in vitro, and the suppression of luciferase gene expression could be rescued by addition of oligonucleotides. Collectively, the data suggest NtGRP1 as a negative modulator of gene expression by binding to DNA or RNA in bulk that could be advantageous for plants in a stress condition like flooding.

Calculations of Free Energy Surfaces for Small Proteins and a Protein-RNA Complex Using a Lattice Model Approach

  • Lee, Eun-Sang;Jung, Youn-Joon
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.spc8
    • /
    • pp.3051-3056
    • /
    • 2011
  • We calculate the free energy surfaces for two small proteins and a protein-RNA complex system by using a lattice model approach. In particular, we employ the Munoz-Eaton model, which is a native-structure based statistical mechanical model for studying protein folding problem. The model can provide very useful insights into the folding mechanisms by allowing one to calculate the free energy surfaces efficiently. We first calculate the free energy surfaces of ubiquitin and BBL, using both approximate and recently developed exact solutions of the model. Ubiquitin exhibits a typical two-state folding behavior, while BBL downhill folding in our study. We then extend the method to study of a protein-RNA complex. In particular, we focus on PAZ-siRNA complex. In order to elucidate the interplay between folding and binding kinetics for this system we perform comparative studies of PAZ only, PAZ-siRNA complex and two mutated complexes. We find that folding and binding are strongly coupled with each other and the bound PAZ is more stable than the unbound PAZ. Our results also suggest that the binding sites of the siRNA may serve act as a nucleus in the folding process.

Mutational Analysis of Cucumber Mosaic Virus Movement Protein Gene

  • You, Jin-Sam;Baik, Hyung-Suk;Paek, Kyung-Hee
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.82-85
    • /
    • 1999
  • The movement protein of cucumber mosaic virus (CMV) is required for cell-to-cell movement of viral RNA. The movement of viral RNA occurs through the plant intercellular connection, the plasmodesmata. The viral movement protein was known to be multi-functional. In this work, a series of deletion mutants of CMV movement protein gene were created to identify the functional domains. The mutated movement proteins were produced as inclusion body in E. coli, and purified and renatured. A polyclonal antibody was raised against the CMV-Kor strain (Korean isolate) movement protein expressed in E. coli. The ability of the truncated proteins to bind to ssRNA was assayed by UV cross-linking and gel retardation analyses. The results indicate that the domain between amino acids 118 and 160 of CMV movement protein is essential for ssRNA binding.

  • PDF