• Title/Summary/Keyword: RO Retentate

Search Result 6, Processing Time 0.024 seconds

A comparative study on SBR and MLE Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR과 MLE 공정의 비교 평가)

  • Kim, Il-Whee;Lee, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.907-915
    • /
    • 2011
  • In this study, the SBR and MLE process was performed for a removal of the RO retentate and the nitrogen removal efficiency was evaluated. The inflow-rate of two processes was set a 10 L/day. The SBR process was operated a two cycle as HRT per one cycle was 12hr and the HRT of the anoxic and aerobic tank was respectively 7.5 hr and 16.5 hr. The methanol was injected for an effective denitrificaion owing to a low C/N ratio of the RO retentate. The two processes were effectively performed for nitrogen removal, but the average removal efficiency of the SBR process was about 94.93% better performance than the MLE process. Therefore, the SBR process demonstrated a good performance more than the MLE process for nitrogen removal of the RO retentate. The kinetic of SNR and SDNR was observed respectively 0.051 kg $NH_{3}-N/kg\;MLVSS{\cdot}dayg$ and 0.287 kg ${NO_3}^--N/kg\;MLVSS{\cdot}day$, which will be useful to design for the wastewater treatment system with a RO retentate.

A Study on Application of SBR Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR 공정 적용에 관한 연구)

  • Kim, Il-Whee;Joo, Hyun-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.79-85
    • /
    • 2012
  • In this study, Application of sequencing batch reactor (SBR) process for RO retentate treatment was performed. Efficiency of treatment by load and temperature variation was tested. The SBR process was operated two types as HRT per one cycle was 8 and 12 hours, respectively. Methanol was injected for an effective denitrificaion owing to low C/N ratio of the RO retentate. TN removal efficiency of the SBR process was relatively stable at the change of flow-rate and temperature. The optimum time cycle of SBR process was 2 cycle/day for TN removal, and in the case of 3 cycle/day, the effluent TN concentration was found under the effluent quality standard. In the result of assessment, the application of SBR process for RO retentate treatment was effective and could be utilized to design for the wastewater treatment plant. The specific nitrification rate (SNR) and specific denitrification rate (SDNR) were $0.043{\sim}0.066kg\;NH_3-N/kg\;MLVSS{\cdot}day$ and $0.096{\sim}0.287kg\;NH_3^--N/kg\;MLVSS{\cdot}day$, respectively. The derived kinetic could be applied for design to the aerobic and anoxic tank in the RO retentate treatment.

A Study of Zinc Separation from Metal Plating Waste Water using RO Membrane (Membrane을 이용한 도금폐수중 아연이온의 분리에 관한 연구)

  • 장차순;이효숙;정헌생;이원권
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1993.10a
    • /
    • pp.65-67
    • /
    • 1993
  • 도금공업은 공업기반기술의 하나로서 기계 및 소재산업의 최종 마무리 공정으로 중요시 되고 있으나 운전중 기술의 특성에 의하여 중금속이 함유된 도금폐수를 방출하게 되어 인체 및 생태계에 매우 유해한 산업중의 하나이다. 기존의 도금폐수처리 방븝으로 침전 응집법이 있으나 이는 사용되는 약품의 양이 많고, 슬러지를 배출하여 2차 공해를 유발하므로 완전한 처리 방법이라 할 수 없다. 본 연구에서는 이러한 국내 도금폐수의 현황을 조사한바 도금폐수중 배출양이 가장 많은 아연계폐수를 대상으로 RO Membrane를 사용하여 실험하였다. RO Membrane으로 실험하였을때 아연이온은 Retentate로 분리 농축되고 Permeate는 재생수로 순환 사용할 수 있는 도금폐수의 무배출 처리공정(Zero-Discharge System) 개발을 존 연구의 목적으로 하였다.

  • PDF

Treatment of natural rubber wastewater by membrane technologies for water reuse

  • Jiang, Shi-Kuan;Zhang, Gui-Mei;Yan, Li;Wu, Ying
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.17-21
    • /
    • 2018
  • A series of laboratory scale experiments were performed to investigate the feasibility of membrane separation technology for natural rubber (NR) wastewater treatment and reuse. Three types of spiral wound membranes were employed in the cross-flow experiments. The NR wastewater pretreated by sand filtration and cartridge filtration was forced to pass through the ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO) membranes successively. The UF retentate, which containing abundant proteins, can be used to produce fertilizer, while the NF retentate is rich in quebrachitol and can be used to extract quebrachitol. The permeate produced by the RO module was reused in the NR processing. Furthermore, about 0.1wt% quebrachitol was extracted from the NR wastewater. Besides, the effluent quality treated by the membrane processes was much better than that of the biological treatment. Especially for total dissolved solids (TDS) and total phosphorus (T-P), the removal efficiency improved 53.11% and 49.83% respectively. In addition, the removal efficiencies of biological oxygen demand (BOD) and chemical oxygen demand (COD) exceeded 99%. The total nitrogen (T-N) and ammonia nitrogen (NH4-N) had approximately similar removal efficiency (93%). It was also found that there was a significant decrease in the T-P concentration in the effluent, the T-P was reduced from 200 mg/L to 0.34 mg/L. Generally, it was considered to be a challenging problem to solve for the biological processes. In brief, highly resource utilization and zero discharge was obtained by membrane separation system in the NR wastewater treatment.

Oxidation of Endocrine Disrupting Chemicals Using Sodium Persulfate (과황산나트륨을 이용한 내분비계장애물질 산화제거)

  • Lim, Chan Soo;Yun, Yeo Bog;Kim, Do Gun;Ko, Seok Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.609-617
    • /
    • 2013
  • The objective of this study was to evaluate the oxidation method to remove endocrine disrupting chemicals in reverse osmosis(RO) retentate for the reuse of wastewater effluent. Oxidation of organic pollutants was induced by the persulfate catalyzed by Fe(II). Affecting factors such as initial pH and ionic strength on the Fe(II) catalyzed persulfate oxidation were evaluated. $17{\alpha}$-ethynylestradiol (EE2) degradation efficiency decreased as pH and ionic strength increased. However, the efficiency increased as chloride ion concentration increased due to the influence of radical transfer.