• Title/Summary/Keyword: RT-LAMP reaction

Search Result 23, Processing Time 0.028 seconds

Simple and Rapid Detection of Potato leafroll virus by Reverse Transcription Loop-mediated Isothermal Amplification

  • Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.27 no.4
    • /
    • pp.385-389
    • /
    • 2011
  • A new reverse transcription loop-mediated isothermal amplification (RT-LAMP) method for the Potato leafroll virus (PLRV) was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR) to address its advantages over RTPCR. RT-LAMP primers were designed from the open reading frame 3 (ORF3) sequence of PLRV. The RT-LAMP reactions were conducted without or with a set of loop primers. By real-time monitoring using Turbimeter, the RT-LAMP (with loop primers) detects PLRV in less than 30 min, compared to 120 min of RT-PCR. By adding fluorescent reagent during the reaction, final products of the RT-LAMP were fluorescently visualized under UV light or could be differentiated by naked-eye inspection under normal light. The RT-LAMP was extremely sensitive, about 2000-fold more sensitive than RT-PCR. This study presents great potential of the RT-LAMP for diagnosis and PLRV epidemiology because RT-LAMP method is speedy, sensitive, inexpensive, and convenient.

Development of reverse transcription loop-mediated isothermal amplification assays for point-of-care testing of avian influenza virus subtype H5 and H9

  • Zhang, Songzi;Shin, Juyoun;Shin, Sun;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.18 no.4
    • /
    • pp.40.1-40.8
    • /
    • 2020
  • Avian influenza (AIV) outbreaks can induce fatal human pulmonary infections in addition to economic losses to the poultry industry. In this study, we aimed to develop a rapid and sensitive point-of-care AIV test using loop-mediated isothermal amplification (LAMP) technology. We designed three sets of reverse transcription LAMP (RT-LAMP) primers targeting the matrix (M) and hemagglutinin (HA) genes of the H5 and H9 subtypes. RT-LAMP targeting the universal M gene was designed to screen for the presence of AIV and RT-LAMP assays targeting H5-HA and H9-HA were designed to discriminate between the H5 and H9 subtypes. All three RT-LAMP assays showed specific amplification results without nonspecific reactions. In terms of sensitivity, the detection limits of our RT-LAMP assays were 100 to 1,000 RNA copies per reaction, which were 10 times more sensitive than the detection limits of the reference reverse-transcription polymerase chain reaction (RT-PCR) (1,000 to 10,000 RNA copies per reaction). The reaction time of our RT-LAMP assays was less than 30 min, which was approximately four times quicker than that of conventional RT-PCR. Altogether, these assays successfully detected the existence of AIV and discriminated between the H5 or H9 subtypes with higher sensitivity and less time than the conventional RT-PCR assay.

Development of reverse-transcription loop-mediated isothermal amplification assays for point-of-care testing of human influenza virus subtypes H1N1 and H3N2

  • Ji-Soo Kang;Mi-Ran Seo;Yeun-Jun Chung
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.46.1-46.7
    • /
    • 2022
  • Influenza A virus (IAV) is the most widespread pathogen causing human respiratory infections. Although polymerase chain reaction (PCR)-based methods are currently the most commonly used tools for IAV detection, PCR is not ideal for point-of-care testing. In this study, we aimed to develop a more rapid and sensitive method than PCR-based tools to detect IAV using loop-mediated isothermal amplification (LAMP) technology. We designed reverse-transcriptional (RT)-LAMP primers targeting the hemagglutinin gene. RNAs from reference H1N1 and H3N2 showed specific RT-LAMP signals with the designed primers. We optimized the reaction conditions and developed universal reaction conditions for both LAMP assays. Under these conditions, the detection limit was 50 copies for both RT-LAMP assays. There was no non-specific signal to 19 non-IAV respiratory viruses, such as influenza B virus, coronaviruses, and respiratory syncytial viruses. Regarding the reaction time, a positive signal was detected within 25 min after starting the reaction. In conclusion, our RT-LAMP assay has high sensitivity and specificity for the detection of the H1 and H3 subtypes, making it suitable for point-of-care IAV testing.

Development of a Rapid Detection Method for Potato virus X by Reverse Transcription Loop-Mediated Isothermal Amplification

  • Jeong, Joojin;Cho, Sang-Yun;Lee, Wang-Hyu;Lee, Kui-jae;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.219-225
    • /
    • 2015
  • The primary step for efficient control of viral diseases is the development of simple, rapid, and sensitive virus detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has been used to detect viral RNA molecules because of its simplicity and high sensitivity for a number of viruses. RT-LAMP for the detection of Potato virus X (PVX) was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR) to demonstrate its advantages over RT-PCR. RT-LAMP reactions were conducted with or without a set of loop primers since one out of six primers showed PVX specificity. Based on real-time monitoring, RT-LAMP detected PVX around 30 min, compared to 120 min for RT-PCR. By adding a fluorescent reagent during the reaction, the extra step of visualization by gel electrophoresis was not necessary. RT-LAMP was conducted using simple inexpensive instruments and a regular incubator to evaluate whether RNA could be amplified at a constant temperature instead of using an expensive thermal cycler. This study shows the potential of RT-LAMP for the diagnosis of viral diseases and PVX epidemiology because of its simplicity and rapidness compared to RT-PCR.

Development of a Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Nervous Necrosis Virus in Olive Flounder Paralichthys olivaceus

  • Suebsing, Rungkarn;Oh, Myung-Joo;Kim, Jeong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.7
    • /
    • pp.1021-1028
    • /
    • 2012
  • In this study, a reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the rapid, sensitive, and inexpensive detection of nervous necrosis virus (NNV) in olive flounder, Paralichthys olivaceus, in Korea. A set of six specific primers was designed to target the RNA 2 gene encoding the coat protein of Korean NNV strains. The RT-LAMP reaction successfully detected NNV after 30 min at $65^{\circ}C$. When the sensitivities among RT-LAMP, RT-PCR, and nested RTPCR were compared, the RT-LAMP was shown to be able to detect the RNA template at $2.58{\times}10^{-2}\;TCID_{50}/ml$, whereas the RT-PCR and nested RT-PCR were only able to detect the RNA template at $2.58{\times}10^2\;TCID_{50}/ml$ and $2.58TCID_{50}/ml$, respectively. Thus, the sensitivity of the RT-LAMP assay was higher than those of the RT-PCR assays. In the specificity test of the RT-LAMP, 2 genotypes of NNVs (SJNNV and RGNNV) were positive; however, no other fish viruses were positive with the primers, indicating that the RT-LAMP assay is only specific to NNV. A total of 102 olive flounder were collected from hatcheries between 2009 and 2011. The occurrence of NNV in olive flounder was determined to be 53.9% (55/102) by the RT-LAMP. On the other hand, the prevalence based on the nested RT-PCR and RT-PCR results was 33.8% (34/102) and 20.6% (21/102), respectively. This result indicates that the RT-LAMP assay developed in this study is suitable for early field diagnosis of NNV with high sensitivity.

Loop-mediated isothermal amplification assay for the rapid detection of swine influenza virus (등온증폭법을 이용한 돼지인플루엔자바이러스 신속 진단법 개발)

  • Kim, Eun-Mi;Jeon, Hyo-Sung;Kim, Ji Jung;Kim, Hee-Jung;Shin, Yeun-Kyung;Song, Jae-Young;Yeo, Sang-Geon;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.38 no.2
    • /
    • pp.107-116
    • /
    • 2015
  • In this study, we developed a rapid, sensitive and specific reverse-transcriptase loop-mediated isothermal amplification (RT-LAMP) assay for detection of swine influenza viruse (SIV) including major subtypes of swine influenza viruses H1N1, H1N2 and H3N2, and a novel subtype of influenza A virus that accidentally infected in pig population. The RT-LAMP was completed in 40 min at $58^{\circ}C$ and the sensitivity of the RT-LAMP ($1copy/{\mu}L$) was 10-fold higher than conventional reverse transcription-polymerase chain reaction (RT-PCR) ($10copy/{\mu}L$) and the same to real time RT-PCR ($1copy/{\mu}L$). Also, the result of the RT-LAMP can be confirmed without any detection system. Therefore, the RT-LAMP could be a alternative diagnostic method for SIV detection in national SIV monitoring system and clinical diagnostic laboratory in the future.

A Reliable Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Detecting Apple stem grooving virus in Pear

  • Lee, Hyo-Jeong;Jeong, Rae-Dong
    • Research in Plant Disease
    • /
    • v.28 no.2
    • /
    • pp.92-97
    • /
    • 2022
  • Apple stem grooving virus (ASGV) is a high-risk viral pathogen that infects many types of fruit trees, especially pear and apple, and causes serious economic losses across the globe. Thus, rapid and reliable detection assay is needed to identify ASGV infection and prevent its spread. A reliable reverse transcription loop-mediated isothermal amplification (RT-LAMP) was developed, optimize, and evaluated for the coding region of coat protein of ASGV in pear leaf. The developed RT-LAMP facilitated the simple screening of ASGV using visible fluorescence and electrophoresis. The optimized reaction conditions for the RT-LAMP were 63℃ for 50 min, and the results showed high specificity and 100-fold greater sensitivity than the reverse transcription polymerase chain reaction. In addition, the reliability of the RT-LAMP was validated using field-collected pear leaves. Furthermore, the potential application of paper-based RNA isolation, combined with RT-LAMP, was also evaluated for detecting ASGV from field-collected samples. These assays could be widely applied to ASGV detection in field conditions and to virus-free certification programs.

Reverse Transcription Loop-Mediated Isothermal Amplification Assay for Rapid Detection of Soybean yellow mottle mosaic virus (콩황화모틀모자이크바이러스의 신속검출을 위한 역전사 등온증폭법)

  • Bae, Dae Hyeon;Park, Chung Youl;Kim, Bong-Sub;Lee, Yeong-Hoon;Yoon, Young-Nam;Kang, Hang Won;Oh, Jonghee;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.178-183
    • /
    • 2016
  • Soybean yellow mottle mosaic virus (SYMMV) is a new emerging plant virus detected in soybean (Glycine max) in Korea. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid detection of SYMMV has been developed. In this study, we have designed primers (SYMM-F3/B3/FIP/BIP) specific to sequences from the coat protein gene of SYMMV genome. Sensitivity analysis showed that RT-LAMP was 10 to 100 times more sensitive than reverse transcription polymerase chain reaction (RT-PCR). The optimal reaction condition of RT-LAMP was determined at $65^{\circ}C$ for 50 minutes. The result indicates that RT-LAMP assay does not require special equipment and long time for SYMMV detection. Therefore, it can be an alternative detection method of RT-PCR in laboratory.

Pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) for the rapid detection of foot-and-mouth disease virus (구제역바이러스 신속진단을 위한 pan-serotype reverse transcription loop-mediated isothermal amplification (RT-LAMP) 진단법)

  • Lim, Da-Rae;Park, Yu-Ri;Park, Sun-Young;Kim, Hye-Ryung;Park, Min-Ji;Ku, Bok-Kyung;Nah, Jin-Ju;Ryoo, So-Yoon;Wee, Sung-Hwan;Jeon, Hyo-Sung;Kim, Ji-Jeong;Jeon, Bo-Young;Lee, Hyeong-Woo;Park, Choi-Kyu
    • Korean Journal of Veterinary Service
    • /
    • v.41 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • In this study, we developed a sensitive and specific reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid visual detection of foot-and-mouth disease virus (FMDV) circulated in Korea. The RT-LAMP was completed in 40 min at $62^{\circ}C$ and the results of the assay were directly detected by naked eye without any detection process. The assay specifically amplified all 7 serotypes of FMDV RNAs but not amplified other viral and cellular nucleic acids. The sensitivity of the RT-LAMP was $10^2$, $10^3$ and $10^3TCID_{50}/mL$ for serotype O, A and Asia 1 FMDV, respectively, which was comparable to conventional reverse transcription polymerase chain reaction (RT-PCR) and relatively lower than that of real time quantitative RT-PCR (qRT-PCR). Clinical evaluation of the RT-LAMP using different serotypes of Korean and foreign FMDV strains showed a 100% (35/35) agreement with the results of the RT-PCR and qRT-PCR. These results indicated that RT-LAMP assay developed in this study could be a valuable diagnostic method for FMDV monitoring and surveillance.

Rapid and Sensitive Detection of Hepatitis C Virus in Clinical Blood Samples Using Reverse Transcriptase Polymerase Spiral Reaction

  • Sun, Wenying;Du, Ying;Li, Xingku;Du, Bo
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.459-468
    • /
    • 2020
  • This study established a new polymerase spiral reaction (PSR) that combines with reverse transcription reactions for HCV detection targeting 5'UTR gene. To avoid cross-contamination of aerosols, an isothermal amplification tube (IAT), as a separate containment control, was used to judge the result. After optimizing the RT-PSR reaction system, its effectiveness and specificity were tested against 15 different virus strains which included 8 that were HCV positive and 7 as non-HCV controls. The results showed that the RT-PSR assay effectively detected all 8 HCV strains, and no false positives were found among the 7 non-HCV strains. The detection limit of our RT-PSR assay is comparable to the real-time RT-PCR, but is more sensitive than the RT-LAMP. The established RT-PSR assay was further evaluated for detection of HCV in clinical blood samples, and the resulting 80.25% detection rate demonstrated better or similar effectiveness compared to the RT-LAMP (79.63%) and real-time RT-PCR (80.25%). Overall, the results showed that the RT-PSR assay offers high specificity and sensitivity for HCV detection with great potential for screening HCV in clinical blood samples.