• Title/Summary/Keyword: Radiation degradation

Search Result 285, Processing Time 0.026 seconds

Degradation of p-nitrophenol by Gamma Irradiation

  • Lee, O Mi;Kim, Tae-Hun;Yu, Seungho;Jung, In-ha;Lee, Myunjoo
    • Journal of Radiation Industry
    • /
    • v.5 no.4
    • /
    • pp.353-357
    • /
    • 2011
  • Degradation of p-nitrophenol has been carried out using only gamma irradiation or gamma irradiation with $H_2O_2$ or $Na_2S_2O_8$. Effects of different operating parameters such as initial concentration ($50mg\;l^{-1}$, $100mg\;l^{-1}$, $200mg\;l^{-1}$, $300mg\;l^{-1}$, $400mg\;l^{-1}$, $500mg\;l^{-1}$ and $600mg\;l^{-1}$) on the extent of degradation has been investigated. At 5 kGy, $50mg\;l^{-1}$ p-nitrophenol was completely degraded, and the radiolytic degradation of p-nitrophenol was described by the pseudo-first-order kinetic model. The combination of gamma irradiation with $H_2O_2$ or $Na_2S_2O_8$ leads to an enhanced effect, which remarkably increased the degradation efficiency of p-nitrophenol and TOC removal. However, at high $H_2O_2$ concentration, the efficacy of p-nitrophenol degradation is reduced because ${\cdot}OH$ radicals are scavenged by $H_2O_2$ and $Na_2S_2O_8$.

The effects on the crystal structure of Polypropylene exposed Radiation and Its dielectric properties (방사선이 폴리프로필렌의 결정구조에 미치는 영향과 유전특성)

  • 강전홍;김한준;유광민;박강식;김종석;한상옥
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.894-896
    • /
    • 2001
  • The Polypropylene films which are made by refinement of its pellet and formed as crystals are exposed to Radiation. As the results, degradation effects were observed in non-crystalline regions. It is thus considered that the effects occur by destroying of lattice binding force by Radiation. The distribution of degradation was increased with irradiation quantities of Radiation and dielectric constant of Polypropylene sheets irradiated Radiation was rapidly increased from above 10 MHz.

  • PDF

Effect of Concentration of Carboxymethycellulose on Degradation by Radiation (Carboxymethycellulose의 농도에 따른 방사선 분해 연구)

  • Kim, Jeongsoo;Sung, Nak-Yun;Kim, Jae-Hun;Kim, Tae-woon;Lee, Ju-Woon;Choi, Jong-il
    • Journal of Radiation Industry
    • /
    • v.4 no.4
    • /
    • pp.385-389
    • /
    • 2010
  • In this study, the effect of the concentration of carboxymethylcellulose (CMC) solution on the degradation by irradiation was investigated. The CMC solutions with different concentrations of 3%, 4%, 5%, 6% and 7% were irradiated at the doses of 5, 10, 15, 20, 25 and 30 kGy with gamma ray or electron beam, and the viscosity of CMC solution was measured. The viscosity of the CMC solutions was decreased with an increase in the irradiation dose, but the extent of the degradation by an irradiation was found to be decreased with an increase of the CMC concentration in the solution. The dependency of the irradiation sources showed that an electron beam radiation had degraded the CMC less severely than gamma ray.

Evaluation of Radiation Degradation or Crosslinked Polyethylene using TGA (TGA를 이용한 가교폴리에틸렌의 방사선 열화 평가)

  • Lee, Chung;Kim, Ki-Yup;Ryu, Boo-Hyung;Lim, Kee-Joe
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.2
    • /
    • pp.50-55
    • /
    • 2003
  • Radiation degradation of crosslinked polyethylene(XLPE) was investigated using thermogravimetric analysis(TGA), The results of TGA were compared with FT-IR, melting temperature, oxidation induction time, and elongation at break on the XLPE exposed by $\gamma$-ray. 5% decomposition temperature of $\gamma$-ray irradiated XLPE showed similar tendencies with the case of elongation at break. Both properties agreed below 1000 KGy, however, did not show any remarkable characteristics above 1000 kGy, these properties can be useful to evaluate the radiation degradation of XLPE for only low irradiated region. Above 1000 kGy, the thermal decomposition activation energy showed decreased, on the contrary, increasing below 1000 kGy. Compared with FT-IR spectrum of irradiated XLPE, it was confirmed that the oxidation reaction was still occurring below 1000 kGy. Radiation degradation of XLPE was dependent upon the irradiation doses, TGA can be a useful tool to evaluate the degradation.

Dielectric Analysis and Dynamic Mechanical Analysis of Radiation Degradation of PEEK (방사선 열화에 따른 PEEK의 유전특성과 동적 기계적 특성)

  • Kim, Ki-Yup;Kang, Hyun-Koo;Ryu, Boo-Hyung;Lee, Chung;Lim, Kee-Joe
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.485-488
    • /
    • 2003
  • Radiation degradation of Poly(ether ether ketone) (PEEK) has been studied by dielectric analysis and dynamic mechanical analysis. It has been observed that dielectric properties are influenced by radiation degradation of PEEK. For radiation degradation of PEEK, dynamic mechanical properties were insensible.

  • PDF

Evaluation of Irradiated Oxidation of XLPE Based on Thermal and IR Reflection Properties

  • Ryu, Boo-Hyung;Lee, Chung;Kim, Ki-Yup
    • International Journal of Safety
    • /
    • v.7 no.1
    • /
    • pp.10-14
    • /
    • 2008
  • For evaluating the radiation degradation of cross-linked polyethylene (XLPE) cable insulation due to the irradiated oxidation, XLPE was irradiated with ${\gamma}$-ray. For each irradiated samples, TGA, DSC, FT-IR, and tensile tests were carried out. Regarding radiation degradation, oxidative process was predominant. TGA, DSC and FT-IR can be useful tools for evaluating the radiation degradation due to the irradiated oxidation because these analyses need only small amount of samples. The results of TGA, DSC and FTIR analyses showed the similar tendency for irradiated degradation. They can be useful tools for evaluating the oxidation of insulating material by non-destructive testing.

Enhancement of Pendimethalin Degradation Activity in Bacillus sp. MS202 using Gamma Radiation

  • Lee Young-Keun;Chang Hwa-Hyoung;Lee Ho-Jin;Park Heesoon;Lee Kyung Hee;Joe Min-Ho
    • Korean Journal of Environmental Biology
    • /
    • v.23 no.4
    • /
    • pp.405-408
    • /
    • 2005
  • To induce the enhanced mutants of dinitroaniline herbicide pendimethalin degrading bacterium, Bacillus sp. MS202 was irradiated with gamma radiation at the dose of $LD_{99}$ (3.35 kGy). Three enhanced mutants (MS202m7, MS202m14, MS202m18) were isolated from the candidates by the generation - isolation method. Clear zone formation and the GC analysis confirmed that the degrading activity of each enhanced mutant (MS202m7, MS202m14, MS202m18), the formation of pendimethalin metabolite, increased by $11\%,\;45\%,\;and\;32\%$ than a wild type, respectively. It suggested that these mutants induced by gamma radiation could be useful for the application of pesticide degradation.

Thermal Properties of Chloroprene Rubber with $^{60}Co\;{\gamma}$-ray Irradiation ($^{60}Co\;{\gamma}$-선 조사에 따른 클로프렌 고무의 열적 특성)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.4
    • /
    • pp.64-70
    • /
    • 2003
  • The thermal properties of chloroprene rubber (CR) with $^{60}Co\;{\gamma}$-ray irradiation has been investigated. The prepared CR was irradiated up to 1000kGy radiation dose by $^{60}Co\;{\gamma}$-ray and the radiation degradation of CR was investigated by thermogravimetric analysis and differential acanning calorimetry. Dynamic mechanical properties measurement and FT-IR observation are carried out as well. From these analyses results, the glass transition temperature($T_g$), decomposition onset temperature(DOT), oxidative induction time(OIT), the peak temperature of loss modulus and mechanical tan ${\delta}$ values were compared for the radiation degradation level of CR. The tendency between $T_g$ and peak temperature of loss modulus and mechanical tan ${\delta}$ agreed well with radiation doses. Decomposition temperature, OIT and DOT showed the same tendencies as increasing radiation doses. It was verified that these analyses are available to estimate the degradation level of CR.

Assessment of Radiation Degradation of Insulating Materials using Thermogravimetry Analysis (열중량 분석에 의한 유기절연재료의 방사선 열화 평가)

  • Kim, K.Y.;Ryu, B.H.;Lee, C.;Lim, K.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1537-1539
    • /
    • 2001
  • The radiation degradation of five insulating materials such as silicone rubber, ethylene-propylene rubber polybutylene terephthalte, poly carbonate, nylon 66 were evaluated by using thermogravimetry analysis (TGA) and tensile properties as a function of radiation doses. The results of temperature at 5% weight loss and activation energy from TGA showed linearly decreasing and increasing tendency as radiation doses comparing with tensile properties. Consequently, the assessment of TGA for the radiation degradation of materials was effective.

  • PDF

Nondestructive Characterization and In-situ Monitoring of Corrosion Degradation by Backward Radiated Ultrasound

  • Song, Sung-Jin;Kim, Young H.;Bae, Dong-Ho;Kwon, Sung D.
    • Corrosion Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.114-119
    • /
    • 2005
  • Since the degradation caused by corrosion is restricted to the surface of materials, conventional ultrasonic nondestructive evaluation methods based on ultrasonic bulk waves are not applicable to characterization of the corrosion degradation. To take care of this difficulty, a new nondestructive evaluation method that uses ultrasonic backward radiation has been proposed recently. This paper explores the potential of this newly developed method for nondestructive characterization and in-situ monitoring of corrosion degradation. Specifically, backward radiated ultrasounds from aged thermo-mechanically controlled process (TMCP) steel specimens by corrosion fatigue were measured and their characteristics were correlated to those of the aged specimens. The excellent correlation observed in the present study demonstrates the high potential of the backward radiated ultrasound as an effective tool for nondestructive characterization of corrosion degradation. In addition, the potential of the backward radiated ultrasound to in-situ monitoring of corrosion degradation is under current investigation.