• Title/Summary/Keyword: Radiation dose to heart

Search Result 116, Processing Time 0.032 seconds

Morphological Factors and Cardiac Doses in Whole Breast Radiation for Left-sided Breast Cancer

  • Guan, Hui;Dong, Yuan-Li;Ding, Li-Jie;Zhang, Zi-Cheng;Huang, Wei;Liu, Cheng-Xin;Fu, Cheng-Rui;Zhu, Jian;Li, Hong-Sheng;Li, Miao-Miao;Li, Bao-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.2889-2894
    • /
    • 2015
  • Background: To investigate the impact of the breast size, shape, maximum heart depth (MDH), and chest wall hypotenuse (the distance connecting middle point of the sternum and the length of lung draw on the selected transverse CT slice) on the volumetric dose to heart with whole breast irradiation (WBI) of left-sided breast cancer patients. Materials and Methods: Fifty-three patients with left-sided breast cancer undergoing adjuvant intensity-modulated radiotherapy (IMRT) were enrolled in the study. The primary breast size and shape, MHD and DCWH (chest wall hypotenuse) were contoured on radiotherapy (RT) planning CT slices. The dose data of hearts were obtained from the dose-volume histograms (DVHs). Data were analyzed by one-way analysis of variance (ANOVA), Student's t-test and linear regression analysis. Results: Breast size was independent of heart dose, whereas breast shape, MHD and DCWH were correlated with heart dose. The shapes of breasts were divided into four types, as the flap type, hemisphere type, cone type and pendulous type with heart mean dose being $491.8{\pm}234.6cGy$, $752.7{\pm}219.0cGy$, $620.2{\pm}275.7cGy$, and $666.1{\pm}238.0cGy$, respectively. The flap type of breasts shows a strong statistically reduction in heart dose, compared to others (p=0.008 for V30 of heart). DCWH and MHD were found to be the most important parameters correlating with heart dose in WBI. Conclusions: More attention should be paid to the heart dose of non-flap type patients. The MHD was found to be the most important parameter to correlate with heart dose in tangential WBI, closely followed by the DCWH, which could help radiation oncologists and physicsts evaluate heart dose and design RT plan in advance.

The impact of continuous positive airway pressure on radiation dose to heart and lung during left-sided postmastectomy radiotherapy when deep inspiration breath hold technique is not applicable: a case report

  • Kil, Whoon Jong;Pham, Tabitha;Hossain, Sabbir;Casaigne, Juan;Jones, Kellie;Khalil, Mohammad
    • Radiation Oncology Journal
    • /
    • v.36 no.1
    • /
    • pp.79-84
    • /
    • 2018
  • Deep inspiration breathing hold (DIBH) compared to free-breathing (FB) during radiotherapy (RT) has significantly decreased radiation dose to heart and has been one of the techniques adopted for patients with breast cancer. However, patients who are unable to make suitable deep inspiration breath may not be eligible for DIBH, yet still need to spare the heart and lung during breast cancer RT (left-sided RT in particular). Continuous positive airway pressure (CPAP) is a positive airway pressure ventilator, which keeps the airways continuously open and subsequently inflates the thorax resembling thoracic changes from DIBH. In this report, authors applied CPAP instead of FB during left-sided breast cancer RT including internal mammary node in a patient who was unable to tolerate DIBH, and substantially decreased radiation dose the heart and lung with CPAP compared to FB.

Influence of Intravenous Contrast Medium on Dose Calculation Using CT in Treatment Planning for Oesophageal Cancer

  • Li, Hong-Sheng;Chen, Jin-Hu;Zhang, Wei;Shang, Dong-Ping;Li, Bao-Sheng;Sun, Tao;Lin, Xiu-Tong;Yin, Yong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.3
    • /
    • pp.1609-1614
    • /
    • 2013
  • Objective: To evaluate the effect of intravenous contrast on dose calculation in radiation treatment planning for oesophageal cancer. Methods: A total of 22 intravein-contrasted patients with oesophageal cancer were included. The Hounsfield unit (HU) value of the enhanced blood stream in thoracic great vessels and heart was overridden with 45 HU to simulate the non-contrast CT image, and 145 HU, 245 HU, 345 HU, and 445 HU to model the different contrast-enhanced scenarios. 1000 HU and -1000 HU were used to evaluate two non-physiologic extreme scenarios. Variation in dose distribution of the different scenarios was calculated to quantify the effect of contrast enhancement. Results: In the contrast-enhanced scenarios, the mean variation in dose for planning target volume (PTV) was less than 1.0%, and those for the total lung and spinal cord were less than 0.5%. When the HU value of the blood stream exceeded 245 the average variation exceeded 1.0% for the heart V40. In the non-physiologic extreme scenarios, the dose variation of PTV was less than 1.0%, while the dose calculations of the organs at risk were greater than 2.0%. Conclusions: The use of contrast agent does not significantly influence dose calculation of PTV, lung and spinal cord. However, it does have influence on dose accuracy for heart.

A Change in an Absorbed Dose of the Heart in General and Respiratory Control Radiation Treatment Plans (일반 및 호흡조절 방사선치료계획에서 심장의 흡수선량 변화)

  • Yang, Eun-Ju;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.313-319
    • /
    • 2018
  • In radiation treatment, it is unavoidable to block the influence of scattered ray on a skin and prevent internal normal organs from being exposed to radiation. It is fair to say that radiation therapy aims to reduce an absorbed dose of normal tissues. In particular, in radiation therapy of left-sided breast cancer, the internal neighboring organs are normal breast tissues, the heart, and the lung. The side effects on the heart include cardioplegy and myocardial infarction. This study tried to observe changes in the volume and dose of the heart in general radiation therapy plan and respiratory control based radiation therapy plan for patients with left-sided breast cancer, and to find the heart's volume and dose generated by respiration. According to the 4D computer tomography (CT), a volume of the heart had $12.8{\pm}8.7cc$ on average, and its dose had $17.3{\pm}12.1cGy$ on average. The differences in the volume and dose may cause side effects in radiation treatment. Therefore, it is necessary to apply respiratory control technique to establish the radiation treatment plan based on an accurate position of the heart.

Radiochromic film dosimetry for linac-based stereotactic radiosurgery

  • Han, Seung-Hee;Park, Suk-Won;Oh, Do-Hoon
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.302-304
    • /
    • 2002
  • In linac-based stereotactic radiosurgery, assuring the quality of the planning and delivery of external photon beam requires accurate evaluation of beam parameters, usually including output factors, tissue-phantom ratio and off-axis ratios, and measurement of actual dose distributions from simulated treatment. We're going to test the use of calibrated radio chromic film (Gafchromic film; type MD-55, Nuclear associate) using a Lumiscan 75 digitizer to measure absolute dose and relative dose distributions for linac-based radiosurgery unit Relative dose distribution of a human-style spherical acryl phantom were measured using radiochromic film and calculated by treatment planning system. The absolute dose at the sphere center was measured by radiochromic film and micro chamber (Exradin A-14, 0.009cc). What we want to demonstrate in this work, the 'well selected' radiochromic films when external photon beam are used in linac-based stereotactic radiosurgery are very accurate detector for dosimetry.

  • PDF

An Experimental Study on the Effect of Irradiation and cia- dichlorodiBmmineplatinum(II) on the myocardium of Rats (방사선조사와 cis-dichlorodismmineplstinum(II)가 휜쥐의 심근에 미치는 효과에 관한 실험적 연구)

  • Lee Kyung-Ja
    • Radiation Oncology Journal
    • /
    • v.12 no.3
    • /
    • pp.285-293
    • /
    • 1994
  • Purpose : The study was designed to investigate the effect of cis-dichlorodiammineplatinum(II)(cis-DDP) on the radiation-induced cardiomyopathy in the rat. Materials and Methods : The myocardial damage was assessed by histopathologic changes. In radiation alone group, radiation dose ranged from 10-40 Gy X-ray in a single dose and in combined group, cis-dichlorodiammineplatinum(II) at a dose of 6 mg/kg was given intraperitoneally immediately after irradiation of same dose with X-ray alone group. Results : The early changes by radiation included congestion, inflammatory cell infiltrations and fibrosis in myocardial interstitium with focal myocardial necrosis, which was noted in 10 Gy group, Myocardial fibrosis was increased by increasing dose of radiation but myocardial necrosis was not Proportional to radiation dose. cis-DDP alone group showed minimal degeneration of myocardium with surrounded by inflammatory cell infiltrations. In combined group, myocardial fibrosis in 10 Gy group were similar to radiation alone group, but 30 Gy and 40 Gy groups showed severer changes. Electron microscopic examination showed disruption of Z-band and edema of mitochondria with decreased matrix density in 20 Gy radiation group which were severer in 40 Gy radiation group. Combined group showed endothelial changes and disruption of Z-band worse than radiation alone group as well as increased connective tissue, which was considered as a hallmark of late change in radiation-induced heart disease. Conclusion : This results showed minimal enhancement of the radiation-induced cardiomyopathy in rats by cis-DDP.

  • PDF

Photon Beam Commissioning for Monte Carlo Dose Calculation

  • Cho, Byung-Chul;Park, Hee-Chul;Hoonsik Bae
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.106-108
    • /
    • 2002
  • Recent advances in radiation transport algorithms, computer hardware performance, and parallel computing make the clinical use of Monte Carlo based dose calculations possible. Monte Carlo treatment planning requires accurate beam information as input to generate accurate dose distributions. The procedures to obtain this accurate beam information are called "commissioning", which includes accelerator head modeling. In this study, we would like to investigate how much accurately Monte Carlo based dose calculations can predict the measured beam data in various conditions. The Siemens 6MV photon beam and the BEAM Monte Carlo code were used. The comparisons including the percentage depth doses and off-axis profiles of open fields and wedges, output factors will be presented.

  • PDF

Protective effect of Tranilast on radiation-induced heart fibrosis in C57BL/6 mouse

  • Moon, Seongkwon
    • International Journal of Contents
    • /
    • v.8 no.4
    • /
    • pp.64-69
    • /
    • 2012
  • The heart is a major dose-limiting organ for radiotherapy of cancer in the thoracic region. The purpose of this study was to examine the protective effect of tranilast on the radiation-induced heart fibrosis model using the C57BL/6 murine strain. A significant reduction in the expression of TGF-${\beta}1$, collagen type I and collagen type III was observed in the radiation plus tranilast group. The authors also suggest the use of tranilast in a clinical trial for the prevention of radiation-induced heart fibrosis.

Cardiac dose reduction with breathing adapted radiotherapy using self respiration monitoring system for left-sided breast cancer

  • Sung, KiHoon;Lee, Kyu Chan;Lee, Seung Heon;Ahn, So Hyun;Lee, Seok Ho;Choi, Jinho
    • Radiation Oncology Journal
    • /
    • v.32 no.2
    • /
    • pp.84-94
    • /
    • 2014
  • Purpose: To quantify the cardiac dose reduction during breathing adapted radiotherapy using Real-time Position Management (RPM) system in the treatment of left-sided breast cancer. Materials and Methods: Twenty-two patients with left-sided breast cancer underwent CT scans during breathing maneuvers including free breathing (FB), deep inspiration breath-hold (DIBH), and end inspiration breath-hold (EIBH). The RPM system was used to monitor respiratory motion, and the in-house self respiration monitoring (SRM) system was used for visual feedback. For each scan, treatment plans were generated and dosimetric parameters from DIBH and EIBH plans were compared to those of FB plans. Results: All patients completed CT scans with different breathing maneuvers. When compared with FB plans, DIBH plans demonstrated significant reductions in irradiated heart volume and the heart $V_{25}$, with the relative reduction of 71% and 70%, respectively (p < 0.001). EIBH plans also resulted in significantly smaller irradiated heart volume and lower heart $V_{25}$ than FB plans, with the relative reduction of 39% and 37%, respectively (p = 0.002). Despite of significant expansion of lung volume using inspiration breath-hold, there were no significant differences in left lung $V_{25}$ among the three plans. Conclusion: In comparison with FB, both DIBH and EIBH plans demonstrated a significant reduction of radiation dose to the heart. In the training course, SRM system was useful and effective in terms of positional reproducibility and patient compliance.

Evaluation of Dose Reduction of Cardiac Exposure Using Deep-inspiration Breath Hold Technique in Left-sided Breast Radiotherapy (좌측 유방암 방사선 치료에서 깊은 들숨 호흡법을 이용한 심장 선량 감소 평가)

  • Jung, Joo-Young;Kim, Min-Joo;Jung, Jae-Hong;Lee, Seu-Ran;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.24 no.4
    • /
    • pp.278-283
    • /
    • 2013
  • Breast cancer is the leading cause of cancer death in women worldwide and the number of women breast cancer patient was increased continuously. Most of breast cancer patient has suffered from unnecessary radiation exposure to heart, lung. Low radiation dose to the heart could lead to the worsening of preexisting cardiovascular lesions caused by radiation induced pneumonitis. Also, several statistical reports demonstrated that left-sided breast cancer patient showed higher mortality than right-sided breast cancer patient because of heart disease. In radiation therapy, Deep Inspiration Breath Hold (DIBH) technique which the patient takes a deep inspiration and holds during treatment and could move the heart away from the chest wall and lung, has showed to lead to reduction in cardiac volume and to minimize the unnecessary radiation exposure to heart during treatment. In this study, we investigated the displacement of heart using DIBH CT data compared to free-breathing (FB) CT data and radiation exposure to heart. Treatment planning was performed on the computed tomography (CT) datasets of 10 patients who had received lumpectomy treatments. Heart, lung and both breasts were outlined. The prescribed dose was 50 Gy divided into 28 fractions. The dose distributions in all the plans were required to fulfill the International Commission on Radiation Units and Measurement specifications that include 100% coverage of the CTV with ${\geq}95%$ of the prescribed dose and that the volume inside the CTV receiving >107% of the prescribed dose should be minimized. Scar boost irradiation was not performed in this study. Displacement of heart was measured by calculating the distance between center of heart and left breast. For the evaluation of radiation dose to heart, minimum, maximum and mean dose to heart were calculated. The present study demonstrates that cardiac dose during left-sided breast radiotherapy can be reduced by applying DIBH breathing control technique.